Suppr超能文献

对面板数据的连续时间潜在马尔可夫模型进行拟合和解释。

Fitting and interpreting continuous-time latent Markov models for panel data.

机构信息

Department of Biostatistics, University of Washington, Seattle, WA, U.S.A.

出版信息

Stat Med. 2013 Nov 20;32(26):4581-95. doi: 10.1002/sim.5861. Epub 2013 Jun 5.

Abstract

Multistate models characterize disease processes within an individual. Clinical studies often observe the disease status of individuals at discrete time points, making exact times of transitions between disease states unknown. Such panel data pose considerable modeling challenges. Assuming the disease process progresses accordingly, a standard continuous-time Markov chain (CTMC) yields tractable likelihoods, but the assumption of exponential sojourn time distributions is typically unrealistic. More flexible semi-Markov models permit generic sojourn distributions yet yield intractable likelihoods for panel data in the presence of reversible transitions. One attractive alternative is to assume that the disease process is characterized by an underlying latent CTMC, with multiple latent states mapping to each disease state. These models retain analytic tractability due to the CTMC framework but allow for flexible, duration-dependent disease state sojourn distributions. We have developed a robust and efficient expectation-maximization algorithm in this context. Our complete data state space consists of the observed data and the underlying latent trajectory, yielding computationally efficient expectation and maximization steps. Our algorithm outperforms alternative methods measured in terms of time to convergence and robustness. We also examine the frequentist performance of latent CTMC point and interval estimates of disease process functionals based on simulated data. The performance of estimates depends on time, functional, and data-generating scenario. Finally, we illustrate the interpretive power of latent CTMC models for describing disease processes on a dataset of lung transplant patients. We hope our work will encourage wider use of these models in the biomedical setting.

摘要

多状态模型描述个体内部的疾病过程。临床研究通常在离散时间点观察个体的疾病状态,使得疾病状态之间的转换的确切时间未知。这种面板数据提出了相当大的建模挑战。假设疾病过程相应地进展,标准连续时间马尔可夫链(CTMC)产生可处理的似然,但指数逗留时间分布的假设通常是不现实的。更灵活的半马尔可夫模型允许通用逗留分布,但在存在可逆转换的情况下,对面板数据产生难以处理的似然。一种有吸引力的替代方案是假设疾病过程由潜在的底层 CTMC 来描述,每个疾病状态都映射到多个潜在状态。这些模型由于 CTMC 框架而保留了分析的可处理性,但允许灵活的、依赖于持续时间的疾病状态逗留分布。在这种情况下,我们已经开发了一种强大而有效的期望最大化算法。我们的完整数据状态空间由观察数据和潜在的轨迹组成,这使得期望和最大化步骤具有计算效率。我们的算法在收敛时间和稳健性方面的表现优于替代方法。我们还根据模拟数据检查了潜在 CTMC 点估计和疾病过程函数的区间估计的频率论性能。估计的性能取决于时间、功能和数据生成场景。最后,我们说明了潜在 CTMC 模型在描述肺移植患者数据集上的疾病过程的解释能力。我们希望我们的工作将鼓励在生物医学环境中更广泛地使用这些模型。

相似文献

2
6
Multistate models for the natural history of cancer progression.癌症进展自然史的多状态模型。
Br J Cancer. 2022 Oct;127(7):1279-1288. doi: 10.1038/s41416-022-01904-5. Epub 2022 Jul 11.
10
Semi-Markov Arnason-Schwarz models.半马尔可夫阿纳森 - 施瓦茨模型
Biometrics. 2016 Jun;72(2):619-28. doi: 10.1111/biom.12446. Epub 2015 Nov 19.

本文引用的文献

3
Estimating disease progression using panel data.使用面板数据估计疾病进展。
Biostatistics. 2010 Apr;11(2):304-16. doi: 10.1093/biostatistics/kxp057. Epub 2010 Jan 11.
4
5
Fast, accurate and simulation-free stochastic mapping.快速、准确且无需模拟的随机映射。
Philos Trans R Soc Lond B Biol Sci. 2008 Dec 27;363(1512):3985-95. doi: 10.1098/rstb.2008.0176.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验