Suppr超能文献

具有刺激响应性大孔形成的动态组织工程支架。

Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation.

机构信息

Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA.

出版信息

Biomaterials. 2013 Jun;34(17):4251-8. doi: 10.1016/j.biomaterials.2013.02.051. Epub 2013 Mar 13.

Abstract

Macropores in tissue engineering scaffolds provide space for vascularization, cell-proliferation and cellular interactions, and is crucial for successful tissue regeneration. Modulating the size and density of macropores may promote desirable cellular processes at different stages of tissue development. Most current techniques for fabricating macroporous scaffolds produce fixed macroporosity and do not allow the control of porosity during cell culture. Most macropore-forming techniques also involve non-physiological conditions, such that cells can only be seeded in a post-fabrication process, which often leads to low cell seeding efficiency and uneven cell distribution. Here we report a process to create dynamic hydrogels as tissue engineering scaffolds with tunable macroporosity using stimuli-responsive porogens of gelatin, alginate and hyaluronic acid, which degrade in response to specific stimuli including temperature, chelating and enzymatic digestion, respectively. SEM imaging confirmed sequential pore formation in response to sequential stimulations: 37 °C on day 0, EDTA on day 7, and hyaluronidase on day 14. Bovine chondrocytes were encapsulated in the Alg porogen, which served as cell-delivery vehicles, and changes in cell viability, proliferation and tissue formation during sequential stimuli treatments were evaluated. Our results showed effective cell release from Alg porogen with high cell viability and markedly increased cell proliferation and spreading throughout the 3D hydrogels. Dynamic pore formation also led to significantly enhanced type II and X collagen production by chondrocytes. This platform provides a valuable tool to create stimuli-responsive scaffolds with dynamic macroporosity for a broad range of tissue engineering applications, and may also be used for fundamental studies to examine cell responses to dynamic niche properties.

摘要

组织工程支架中的大孔为血管生成、细胞增殖和细胞相互作用提供了空间,对于成功的组织再生至关重要。调节大孔的大小和密度可以促进组织发育不同阶段的理想细胞过程。大多数制造大孔支架的当前技术产生固定的大孔度,并且不允许在细胞培养过程中控制孔隙率。大多数大孔形成技术还涉及非生理条件,使得细胞只能在制造后进行接种,这通常导致低细胞接种效率和不均匀的细胞分布。在这里,我们报告了一种使用明胶、藻酸盐和透明质酸的响应性致孔剂来创建具有可调大孔度的动态水凝胶作为组织工程支架的过程,这些致孔剂分别响应特定刺激(包括温度、螯合和酶消化)而降解。SEM 成像证实了响应顺序刺激的顺序孔形成:0 天 37°C,7 天 EDTA,14 天透明质酸酶。牛软骨细胞被包封在 Alg 致孔剂中,作为细胞输送载体,并评估了在顺序刺激处理过程中细胞活力、增殖和组织形成的变化。我们的结果表明,Alg 致孔剂中的细胞有效释放,具有高细胞活力,并显著增加了细胞增殖和在整个 3D 水凝胶中的扩散。动态孔形成还导致软骨细胞产生显著增加的 II 型和 X 型胶原蛋白。该平台为具有动态大孔度的响应性支架的创建提供了有价值的工具,可广泛应用于组织工程应用,也可用于研究细胞对动态生态位特性的反应的基础研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验