Suppr超能文献

一种基于脑功能网络特征提取的动态定向传递函数。

A dynamic directed transfer function for brain functional network-based feature extraction.

作者信息

Li Mingai, Zhang Na

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.

Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China.

出版信息

Brain Inform. 2022 Mar 18;9(1):7. doi: 10.1186/s40708-022-00154-8.

Abstract

Directed transfer function (DTF) is good at characterizing the pairwise interactions from whole brain network and has been applied in discrimination of motor imagery (MI) tasks. Considering the fact that MI electroencephalogram signals are more non-stationary in frequency domain than in time domain, and the activated intensities of α band (8-13 Hz) and β band [13-30 Hz, with [Formula: see text](13-21 Hz) and [Formula: see text](21-30 Hz) included] have considerable differences for different subjects, a dynamic DTF (DDTF) with variable model order and frequency band is proposed to construct the brain functional networks (BFNs), whose information flows and outflows are further calculated as network features and evaluated by support vector machine. Extensive experiments are conducted based on a public BCI competition dataset and a real-world dataset, the highest recognition rate achieve 100% and 86%, respectively. The experimental results suggest that DDTF can reflect the dynamic evolution of BFN, the best subject-based DDTF appears in one of four frequency sub-bands (α, β, [Formula: see text] [Formula: see text]) for discrimination of MI tasks and is much more related to the current and previous states. Besides, DDTF is superior compared to granger causality-based and traditional feature extraction methods, the t-test and Kappa values show its statistical significance and high consistency as well.

摘要

定向传递函数(DTF)擅长刻画全脑网络中的成对相互作用,并已应用于运动想象(MI)任务的判别。考虑到MI脑电图信号在频域比时域更不稳定,且不同受试者的α波段(8 - 13赫兹)和β波段[13 - 30赫兹,包括[公式:见原文](13 - 21赫兹)和[公式:见原文](21 - 30赫兹)]的激活强度存在显著差异,提出了一种具有可变模型阶数和频带的动态DTF(DDTF)来构建脑功能网络(BFN),其信息流和流出流进一步作为网络特征进行计算,并通过支持向量机进行评估。基于一个公开的脑机接口竞赛数据集和一个真实世界数据集进行了大量实验,最高识别率分别达到100%和86%。实验结果表明,DDTF能够反映BFN的动态演化,用于MI任务判别的基于受试者的最佳DDTF出现在四个频率子带(α、β、[公式:见原文]、[公式:见原文])之一中,并且与当前和先前状态的相关性更强。此外,与基于格兰杰因果关系的方法和传统特征提取方法相比,DDTF具有优越性,t检验和卡帕值也显示出其统计显著性和高度一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9d8/8933605/bae25b8bb44a/40708_2022_154_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验