Suppr超能文献

十组分类系统(TGCS)在剖宫产病例组合调整中的应用。一项多中心前瞻性研究。

The application of the Ten Group classification system (TGCS) in caesarean delivery case mix adjustment. A multicenter prospective study.

机构信息

Department of Obstetrics and Gynaecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.

出版信息

PLoS One. 2013 Jun 5;8(6):e62364. doi: 10.1371/journal.pone.0062364. Print 2013.

Abstract

BACKGROUND

Caesarean delivery (CD) rates are commonly used as an indicator of quality in obstetric care and risk adjustment evaluation is recommended to assess inter-institutional variations. The aim of this study was to evaluate whether the Ten Group classification system (TGCS) can be used in case-mix adjustment.

METHODS

Standardized data on 15,255 deliveries from 11 different regional centers were prospectively collected. Crude Risk Ratios of CDs were calculated for each center. Two multiple logistic regression models were herein considered by using: Model 1- maternal (age, Body Mass Index), obstetric variables (gestational age, fetal presentation, single or multiple, previous scar, parity, neonatal birth weight) and presence of risk factors; Model 2- TGCS either with or without maternal characteristics and presence of risk factors. Receiver Operating Characteristic (ROC) curves of the multivariate logistic regression analyses were used to assess the diagnostic accuracy of each model. The null hypothesis that Areas under ROC Curve (AUC) were not different from each other was verified with a Chi Square test and post hoc pairwise comparisons by using a Bonferroni correction.

RESULTS

Crude evaluation of CD rates showed all centers had significantly higher Risk Ratios than the referent. Both multiple logistic regression models reduced these variations. However the two methods ranked institutions differently: model 1 and model 2 (adjusted for TGCS) identified respectively nine and eight centers with significantly higher CD rates than the referent with slightly different AUCs (0.8758 and 0.8929 respectively). In the adjusted model for TGCS and maternal characteristics/presence of risk factors, three centers had CD rates similar to the referent with the best AUC (0.9024).

CONCLUSIONS

The TGCS might be considered as a reliable variable to adjust CD rates. The addition of maternal characteristics and risk factors to TGCS substantially increase the predictive discrimination of the risk adjusted model.

摘要

背景

剖宫产率通常被用作产科护理质量的指标,建议进行风险调整评估,以评估机构间的差异。本研究旨在评估十组分类系统(TGCS)是否可用于病例组合调整。

方法

前瞻性收集了来自 11 个不同区域中心的 15255 例分娩的标准化数据。为每个中心计算了剖宫产的粗风险比。在此考虑了两种多因素逻辑回归模型:模型 1- 产妇(年龄、体重指数)、产科变量(胎龄、胎儿方位、单胎或多胎、既往瘢痕、产次、新生儿出生体重)和危险因素的存在;模型 2- 有无 TGCS 和产妇特征及危险因素的存在。使用多变量逻辑回归分析的接收者操作特征(ROC)曲线评估每个模型的诊断准确性。使用卡方检验和事后两两比较(Bonferroni 校正)验证 AUC 无差异的零假设。

结果

剖宫产率的初步评估显示,所有中心的风险比均明显高于参考值。两种多因素逻辑回归模型均降低了这些差异。然而,这两种方法对机构的排名不同:模型 1 和模型 2(调整 TGCS)分别确定了 9 个和 8 个中心的剖宫产率明显高于参考值,AUC 略有不同(分别为 0.8758 和 0.8929)。在调整了 TGCS 和产妇特征/危险因素的模型中,有 3 个中心的剖宫产率与参考值相似,AUC 最高(0.9024)。

结论

TGCS 可作为调整剖宫产率的可靠变量。在 TGCS 中加入产妇特征和危险因素可显著提高风险调整模型的预测区分度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/173d/3674002/f995a7ef9400/pone.0062364.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验