Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10552-6. doi: 10.1073/pnas.1309277110. Epub 2013 Jun 11.
The motif of distinct H2O molecules in H-bonded networks is believed to persist up to the densest molecular phase of ice. At even higher pressures, where the molecule dissociates, it is generally assumed that the proton remains localized within these same networks. We report neutron-diffraction measurements on D2O that reveal the location of the D atoms directly up to 52 GPa, a pressure regime not previously accessible to this technique. The data show the onset of a structural change at ∼13 GPa and cannot be described by the conventional network structure of ice VII above ∼26 GPa. Our measurements are consistent with substantial deuteron density in the octahedral, interstitial voids of the oxygen lattice. The observation of this "interstitial" ice VII form provides a framework for understanding the evolution of hydrogen bonding in ice that contrasts with the conventional picture. It may also be a precursor for the superionic phase reported at even higher pressure with important consequences for our understanding of dense matter and planetary interiors.
人们相信,在氢键网络中,独特的水分子的主题一直持续到冰的最密集分子相。在更高的压力下,分子会离解,通常认为质子仍然局限在这些相同的网络中。我们报告了 D2O 的中子衍射测量结果,这些结果直接揭示了 D 原子在高达 52 GPa 的压力范围内的位置,这是以前该技术无法达到的压力范围。数据显示,在约 13 GPa 时开始出现结构变化,并且在高于约 26 GPa 时不能用冰 VII 的常规网络结构来描述。我们的测量结果与氧晶格的八面体、间隙空隙中大量的氘密度一致。这种“间隙”冰 VII 形式的观察为理解冰中氢键的演化提供了一个框架,与传统图像形成对比。它也可能是甚至更高压力下报道的超离子相的前体,对我们理解致密物质和行星内部具有重要意义。