Suppr超能文献

颗粒数据存在下的神经网络的开发与分析。

Development and Analysis of Neural Networks Realized in the Presence of Granular Data.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Sep;31(9):3606-3619. doi: 10.1109/TNNLS.2019.2945307. Epub 2019 Nov 8.

Abstract

In this article, we propose a design and evaluation framework of granular neural networks realized in the presence of information granules. Neural networks realized in this manner are able to process both nonnumerical data, such as information granules as well as numerical data. Information granules are meaningful and semantically sound entities formed by organizing existing knowledge and available experimental data. The directional nature of mapping between the input and output data needs to be considered when building information granules. The development of neural networks advocated in this article is realized as a two-phase process. First, a collection of information granules is formed through granulation of numeric data in the input and output spaces. Second, neural networks are constructed on the basis of information granules rather than original (numeric) data. The proposed method leads to the construction of neural networks in a completely new way. In comparison with traditional (numeric) neural networks, the networks developed in the presence of granular data require shorter learning time. They also produce the results (outputs) that are information granules rather than numeric entities. The quality of granular outputs generated by our neural networks is evaluated in terms of the coverage and specificity criteria that are pertinent to the characterization of the information granules.

摘要

在本文中,我们提出了一种在信息粒存在下实现的粒状神经网络的设计和评估框架。以这种方式实现的神经网络能够处理非数值数据,如信息粒和数值数据。信息粒是通过组织现有知识和可用实验数据形成的有意义且语义合理的实体。在构建信息粒时,需要考虑输入和输出数据之间的映射的方向性质。本文所倡导的神经网络的发展是作为一个两阶段过程来实现的。首先,通过对输入和输出空间中的数值数据进行粒化形成一组信息粒。其次,基于信息粒而不是原始(数值)数据构建神经网络。所提出的方法导致以全新的方式构建神经网络。与传统的(数值)神经网络相比,在存在颗粒数据的情况下开发的神经网络需要更短的学习时间。它们还产生的结果(输出)是信息粒而不是数值实体。我们的神经网络生成的粒状输出的质量是根据覆盖范围和特异性标准来评估的,这些标准与信息粒的特征描述有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验