Suppr超能文献

利用叶绿素荧光图像分析进行高通量植物抗性定量表型分析。

High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis.

机构信息

INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé F-49071, France.

出版信息

Plant Methods. 2013 Jun 13;9(1):17. doi: 10.1186/1746-4811-9-17.

Abstract

BACKGROUND

In order to select for quantitative plant resistance to pathogens, high throughput approaches that can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging, chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to quantify disease severity.

RESULTS

Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples. Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel. Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest of this image analysis procedure for assessing the levels of quantitative resistance is illustrated with the quantitation of disease severity on five commercial varieties of bean inoculated with Xff CFBP4834-R.

CONCLUSIONS

In this paper, we describe an image analysis procedure for quantifying the leaf area impacted by the pathogen. In a perspective of high throughput phenotyping, the procedure was automated with the software R downloadable at http://www.r-project.org/. The R script is available at http://lisa.univ-angers.fr/PHENOTIC/telechargements.html.

摘要

背景

为了选择对病原体具有定量植物抗性的品种,需要采用能够精确量化疾病严重程度的高通量方法。自动化和使用校准的图像分析应该比目视评估提供更准确、客观和快速的分析。与传统的可见成像相比,叶绿素荧光成像对环境光变化不敏感,并提供易于通过简单阈值处理方法进行分割分析的单通道图像。在叶绿素荧光成像中使用的各种参数中,光合作用系统 II 光化学的最大量子产量(Fv/Fm)非常适合表型疾病严重程度。Fv/Fm 是植物应激的指标,在感染和健康组织之间显示出强大的对比。在本文中,我们旨在对 Fv/Fm 图像进行分割,以量化疾病严重程度。

结果

基于图像中每个像素的 Fv/Fm 值,开发了一种阈值处理方法来划定病变区域。第一步是设置阈值,以重现经过训练的人员对 Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R 引起的症状在 Phaseolus vulgaris cv. Flavert 上的视觉观察结果。为了开发一种在任何品种或物种上都有价值的阈值处理方法,第二步是基于将像素级 Fv/Fm 分布建模为高斯分布的混合物。这种建模可以区分症状发展的各个阶段,但会过度加权可能出现在模拟接种样本上的伪影。因此,我们开发了一种基于健康像素错误分类概率的阈值处理方法。然后,在病变区域上执行聚类步骤,以区分植物组织改变的各个阶段。值得注意的是,使用叶绿素荧光成像可以检测到出现症状前的区域。该图像分析程序用于评估定量抗性水平的应用,在接种 Xff CFBP4834-R 的五个商业品种的豆类上量化疾病严重程度方面得到了说明。

结论

在本文中,我们描述了一种用于量化受病原体影响的叶片面积的图像分析程序。在高通量表型分析的背景下,该程序通过可从 http://www.r-project.org/ 下载的软件 R 实现了自动化。R 脚本可从 http://lisa.univ-angers.fr/PHENOTIC/telechargements.html 下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b157/3689632/9721eab7b863/1746-4811-9-17-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验