Suppr超能文献

微观磁共振成像中机械加载和钆浓度对关节软骨 T1 变化和糖胺聚糖定量的影响。

The effects of mechanical loading and gadolinium concentration on the change of T1 and quantification of glycosaminoglycans in articular cartilage by microscopic MRI.

机构信息

Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA.

出版信息

Phys Med Biol. 2013 Jul 7;58(13):4535-47. doi: 10.1088/0031-9155/58/13/4535. Epub 2013 Jun 13.

Abstract

Microscopic MRI (µMRI) T1 experiments were carried out to investigate the strain dependence of the T1 change and glycosaminoglycans (GAG) quantification in articular cartilage at a spatial resolution of 17.6 µm. Both native and trypsin-degraded specimens were immersed in various concentrations of gadolinium (Gd) (up to 1 mM) and imaged at different strains (up to 50% strains). Adjacent specimens were treated identically and analyzed biochemically by an inductively coupled plasma optical emission spectrometer. The T1 profile in the native tissue was found to be both strain-dependent and depth-dependent, while there was no obvious depth-dependence in the degraded tissue. For the native tissue, compression reduced the tissue T1 when Gd in the solution was low (less than 0.4 mM) and increased the tissue T1 when Gd in the solution was high. A set of critical points, where the tissue T1 showed no change at a certain Gd concentration between two different loadings, was observed for the first time in the native tissue. It is concluded that the GAG quantification by MRI was accurate as long as the Gd concentration in the solution reached at least 0.2 mM (tissue not loaded) or 0.4 mM (tissue loaded).

摘要

进行了微观磁共振成像 (µMRI) T1 实验,以研究在 17.6 µm 的空间分辨率下关节软骨中 T1 变化和糖胺聚糖 (GAG) 定量的应变依赖性。将天然和胰蛋白酶降解的标本分别浸入不同浓度的钆 (Gd)(高达 1mM)中,并在不同应变(高达 50%应变)下成像。相邻的标本以相同的方式处理,并通过电感耦合等离子体发射光谱仪进行生物化学分析。发现天然组织中的 T1 分布既依赖于应变,也依赖于深度,而降解组织中则没有明显的深度依赖性。对于天然组织,当溶液中的 Gd 较低(小于 0.4mM)时,压缩会降低组织 T1,而当溶液中的 Gd 较高时,会增加组织 T1。在天然组织中,首次观察到在两个不同负载之间,在某一 Gd 浓度下,组织 T1 没有变化的一组临界点。结论是,只要溶液中的 Gd 浓度至少达到 0.2mM(未加载组织)或 0.4mM(加载组织),通过 MRI 进行 GAG 定量就是准确的。

相似文献

2
Molecular origin of a loading-induced black layer in the deep region of articular cartilage at the magic angle.
J Magn Reson Imaging. 2015 May;41(5):1281-90. doi: 10.1002/jmri.24658. Epub 2014 May 16.
3
Depth-dependent profiles of glycosaminoglycans in articular cartilage by microMRI and histochemistry.
J Magn Reson Imaging. 2008 Jul;28(1):151-7. doi: 10.1002/jmri.21392.
5
7
Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions.
Magn Reson Med. 2011 Jun;65(6):1733-7. doi: 10.1002/mrm.22933. Epub 2011 Mar 30.
9
Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging.
Magn Reson Med. 2002 Oct;48(4):640-8. doi: 10.1002/mrm.10273.
10
Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI.
Magn Reson Med. 1999 May;41(5):857-65. doi: 10.1002/(sici)1522-2594(199905)41:5<857::aid-mrm1>3.0.co;2-e.

引用本文的文献

1
2
Effects of Angular Resolution and Value on Diffusion Tensor Imaging in Knee Joint.
Cartilage. 2021 Dec;13(2_suppl):295S-303S. doi: 10.1177/19476035211007909. Epub 2021 Apr 10.
3
Resolution-dependent influences of compressed sensing in quantitative T2 mapping of articular cartilage.
NMR Biomed. 2020 Dec;33(12):e4260. doi: 10.1002/nbm.4260. Epub 2020 Feb 10.
4
Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging.
Magn Reson Med. 2020 Aug;84(2):908-919. doi: 10.1002/mrm.28181. Epub 2020 Jan 21.
5
Magnetic resonance imaging (MRI) studies of knee joint under mechanical loading: Review.
Magn Reson Imaging. 2020 Jan;65:27-36. doi: 10.1016/j.mri.2019.09.007. Epub 2019 Oct 25.
6
Intermolecular interactions play a role in the distribution and transport of charged contrast agents in a cartilage model.
PLoS One. 2019 Oct 3;14(10):e0215047. doi: 10.1371/journal.pone.0215047. eCollection 2019.
7
Multicomponent analysis of T relaxation in bovine articular cartilage at low magnetic fields.
Magn Reson Med. 2019 May;81(5):2858-2868. doi: 10.1002/mrm.27624. Epub 2018 Dec 10.
8
Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.
Cartilage. 2019 Jul;10(3):278-287. doi: 10.1177/1947603517749917. Epub 2018 Jan 3.
9
Compressed sensing in quantitative determination of GAG concentration in cartilage by microscopic MRI.
Magn Reson Med. 2018 Jun;79(6):3163-3171. doi: 10.1002/mrm.26973. Epub 2017 Oct 30.

本文引用的文献

1
Diffusion of Gd-DTPA²⁻ into articular cartilage.
Osteoarthritis Cartilage. 2012 Feb;20(2):117-26. doi: 10.1016/j.joca.2011.11.016. Epub 2011 Dec 2.
2
In vivo transport of Gd-DTPA(2-) in human knee cartilage assessed by depth-wise dGEMRIC analysis.
J Magn Reson Imaging. 2011 Dec;34(6):1352-8. doi: 10.1002/jmri.22750. Epub 2011 Sep 23.
3
Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions.
Magn Reson Med. 2011 Jun;65(6):1733-7. doi: 10.1002/mrm.22933. Epub 2011 Mar 30.
4
The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage.
Osteoarthritis Cartilage. 2010 Dec;18(12):1557-63. doi: 10.1016/j.joca.2010.10.001. Epub 2010 Oct 13.
5
Loaded cartilage T2 mapping in patients with hip dysplasia.
Radiology. 2010 Sep;256(3):955-65. doi: 10.1148/radiol.10091928.
9
Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography.
Magn Reson Imaging. 2009 Jul;27(6):779-84. doi: 10.1016/j.mri.2009.01.016. Epub 2009 Mar 9.
10
In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI.
J Magn Reson. 2009 Mar;197(1):40-7. doi: 10.1016/j.jmr.2008.11.019. Epub 2008 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验