Suppr超能文献

适应刺激优化在感觉系统神经科学中的应用。

Adaptive stimulus optimization for sensory systems neuroscience.

机构信息

Program in Psychology, Florida Gulf Coast University Fort Myers, FL, USA.

出版信息

Front Neural Circuits. 2013 Jun 6;7:101. doi: 10.3389/fncir.2013.00101. eCollection 2013.

Abstract

In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system identification paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of non-linear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify non-linear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and toward a new paradigm of real-time model estimation and comparison.

摘要

在本文中,我们回顾了最近的几条研究线,旨在为感觉神经生理学开发实用的在线自适应刺激生成方法。我们考虑了各种利用在线刺激优化的实验范例,包括经典的最佳刺激范例,其中实验的目标是识别出最大程度地激发神经反应的刺激;等响应范例,其目的是找到产生恒定响应的刺激集;以及系统识别范例,其实验目标是估计和可能比较感觉处理模型。我们讨论了自适应发放率优化的各种理论和实际方面,包括带有刺激空间约束的优化、发放率适应和最优刺激上可能存在的网络约束。我们考虑了系统识别的问题,并展示了如何准确估计非线性模型可能高度依赖于用于探测网络的刺激集。我们建议为准确的模型估计优化刺激,可能使得成功识别原本难以处理的非线性模型成为可能,并总结了此类最近的几项研究。最后,我们提出了一种两阶段的刺激设计程序,它结合了模型估计和模型比较的双重目标,对于事先未知适当模型的系统识别实验可能特别有用。我们认为,由于计算机能力的提高而实现的快速在线刺激优化,可以使感觉神经科学从描述性范例转变为实时模型估计和比较的新范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3381/3674314/a8eec38064c7/fncir-07-00101-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验