Suppr超能文献

实现感觉刺激信息序列设计的自动化。

Automating the design of informative sequences of sensory stimuli.

作者信息

Lewi Jeremy, Schneider David M, Woolley Sarah M N, Paninski Liam

机构信息

Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

J Comput Neurosci. 2011 Feb;30(1):181-200. doi: 10.1007/s10827-010-0248-1. Epub 2010 Jun 16.

Abstract

Adaptive stimulus design methods can potentially improve the efficiency of sensory neurophysiology experiments significantly; however, designing optimal stimulus sequences in real time remains a serious technical challenge. Here we describe two approximate methods for generating informative stimulus sequences: the first approach provides a fast method for scoring the informativeness of a batch of specific potential stimulus sequences, while the second method attempts to compute an optimal stimulus distribution from which the experimenter may easily sample. We apply these methods to single-neuron spike train data recorded from the auditory midbrain of zebra finches, and demonstrate that the resulting stimulus sequences do in fact provide more information about neuronal tuning in a shorter amount of time than do more standard experimental designs.

摘要

自适应刺激设计方法有可能显著提高感觉神经生理学实验的效率;然而,实时设计最优刺激序列仍然是一项严峻的技术挑战。在此,我们描述了两种生成信息丰富的刺激序列的近似方法:第一种方法提供了一种快速方法,用于对一批特定潜在刺激序列的信息量进行评分,而第二种方法试图计算出一种最优刺激分布,实验者可以从中轻松采样。我们将这些方法应用于从斑胸草雀听觉中脑记录的单神经元放电序列数据,并证明与更标准的实验设计相比,由此产生的刺激序列实际上确实能在更短的时间内提供更多关于神经元调谐的信息。

相似文献

1
Automating the design of informative sequences of sensory stimuli.实现感觉刺激信息序列设计的自动化。
J Comput Neurosci. 2011 Feb;30(1):181-200. doi: 10.1007/s10827-010-0248-1. Epub 2010 Jun 16.
7
Reading spike timing without a clock: intrinsic decoding of spike trains.无时钟读取尖峰时间:尖峰列车的内在解码。
Philos Trans R Soc Lond B Biol Sci. 2014 Jan 20;369(1637):20120467. doi: 10.1098/rstb.2012.0467. Print 2014 Mar 5.

引用本文的文献

1
Closing the Experiment-Modeling-Perturbation Loop in Whole-Brain Neuroscience.闭合全脑神经科学中的实验-建模-扰动循环
Neurosci Bull. 2024 Aug;40(8):1212-1214. doi: 10.1007/s12264-024-01253-8. Epub 2024 Jul 16.
2
Active Learning for Discrete Latent Variable Models.离散潜在变量模型的主动学习
Neural Comput. 2024 Feb 16;36(3):437-474. doi: 10.1162/neco_a_01646.
4
Improving scalability in systems neuroscience.提高系统神经科学的可扩展性。
Neuron. 2021 Jun 2;109(11):1776-1790. doi: 10.1016/j.neuron.2021.03.025. Epub 2021 Apr 7.
7
Adaptive stimulus optimization for sensory systems neuroscience.适应刺激优化在感觉系统神经科学中的应用。
Front Neural Circuits. 2013 Jun 6;7:101. doi: 10.3389/fncir.2013.00101. eCollection 2013.
9
Searching for optimal stimuli: ascending a neuron's response function.寻找最佳刺激:提升神经元的反应函数。
J Comput Neurosci. 2012 Dec;33(3):449-73. doi: 10.1007/s10827-012-0395-7. Epub 2012 May 13.
10
Hierarchical representations in the auditory cortex.听觉皮层中的层次表示。
Curr Opin Neurobiol. 2011 Oct;21(5):761-7. doi: 10.1016/j.conb.2011.05.027. Epub 2011 Jun 23.

本文引用的文献

1
Sequential optimal design of neurophysiology experiments.神经生理学实验的序贯优化设计
Neural Comput. 2009 Mar;21(3):619-87. doi: 10.1162/neco.2008.08-07-594.
6
From response to stimulus: adaptive sampling in sensory physiology.从对刺激的反应:感觉生理学中的适应性采样
Curr Opin Neurobiol. 2007 Aug;17(4):430-6. doi: 10.1016/j.conb.2007.07.009. Epub 2007 Aug 8.
7
Sequential structure of neocortical spontaneous activity in vivo.体内新皮层自发活动的序列结构
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):347-52. doi: 10.1073/pnas.0605643104. Epub 2006 Dec 21.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验