Department of Plant Biology, Michigan State University East Lansing, MI, USA ; DOE Great Lakes Bioenergy Research Center, Michigan State University East Lansing, MI, USA.
Front Plant Sci. 2013 Jun 7;4:183. doi: 10.3389/fpls.2013.00183. eCollection 2013.
The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT) families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk). This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180), and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage.
木聚糖骨架合成的确切生化步骤仍然难以捉摸。在拟南芥中,有三个来自两个糖基转移酶(GT)家族的非冗余基因,GT43 家族的 IRX9 和 IRX14 以及 GT47 家族的 IRX10,被认为是形成木聚糖骨架的候选基因。在其他植物中,有证据表明,不同组织以广泛不同的水平表达这三个基因,这表明木聚糖合酶复合物的组成存在多样性。最近,我们对车前草(Plantago ovata Forsk)发育中的粘液组织中的转录本进行了分析。发现该组织中 IRX10 同源物的表达水平很高,但两个 GT43 家族成员的水平非常低。这与最近对小麦胚乳组织的分析形成了鲜明对比,后者发现 GT43 家族成员的丰度相对较高。我们对车前草粘液层的四个发育阶段和一个车前草茎的单个阶段表达的所有 GT 基因进行了深入分析,使用了 RNA-Seq。该分析揭示了几个 IRX10 同源物、GT61 的扩张(At3g18170/At3g18180 的同源物),以及其他 GT 家族的几个 GTs,它们在粘液组织中高度丰富且特异性表达。我们目前的假设是,在粘液组织中存在的四个 IRX10 基因已经进化到可以在没有 GT43 基因的情况下发挥作用。这四个基因代表了迄今为止鉴定出的最具差异的 IRX10 基因之一。相反,那些存在于车前草根中的基因与其他双子叶植物中的基因非常相似。这表明这些基因受到选择压力的影响,可能是由于在粘液中存在的各种木聚糖结构的合成,其生化作用与次生壁中存在的木聚糖结构不同。大量的 GT61 家族成员也表现出广泛的序列多样性,可能负责车前草粘液中存在的更多侧链结构。