Lee Chanhui, Teng Quincy, Zhong Ruiqin, Yuan Youxi, Ye Zheng-Hua
Department of Plant Biology; University of Georgia; Athens, GA USA; Department of Plant and Environmental New Resources; Kyung Hee University; Yongin, South Korea.
Department of Pharmaceutical and Biomedical Sciences; University of Georgia; Athens, GA USA.
Plant Signal Behav. 2014;9(1):e27809. doi: 10.4161/psb.27809. Epub 2014 Feb 13.
Xylan is the major hemicellulose present in both primary and secondary cell walls of rice vegetative tissues. Since xylan is one of the factors contributing to biomass recalcitrance, understanding how xylan is synthesized in rice will potentially provide tools to modify grass biomass composition better suited for biofuel production. Studies of xylan biosynthesis in Arabidopsis have revealed that family GT43 glycosyltransferases, which form 2 functionally nonredundant groups, IRX9/IRX9 homolog and IRX14/IRX14 homolog, are required for xylan backbone elongation. The rice genome harbors 10 genes encoding family GT43 members and it is currently unknown whether they are all involved in xylan biosynthesis. In this report, we performed biochemical analysis of xylan xylosyltransferase activity in rice stem microsomes and investigated the roles of 4 representative rice GT43 members, OsGT43A (LOC_Os05 g03174), OsGT43E (LOC_Os05 g48600), OsGT43H (LOC_Os04 g01280), and OsGT43J (LOC_Os06 g47340), in xylan biosynthesis. OsGT43 proteins were shown to be localized in the Golgi, where xylan biosynthesis occurs. Complementation analysis by expression of OsGT43s in Arabidopsis irx9 and irx14 mutants demonstrated that OsGT43A and OsGT43E but not OsGT43H and OsGT43J were able to rescue the mutant phenotypes conferred by the irx9 mutation, including defective stem mechanical strength, vessel morphology, xylan content, GlcA side chains, xylan chain length, and xylosyltransferase activity. On the other hand, OsGT43J but not OsGT43A, OsGT43E, and OsGT43H restored the defective xylan phenotype in the irx14 mutant. These results indicate that the rice GT43 family evolved to retain the involvement of 2 functionally nonredundant groups, OsGT43A and OsGT43E (IRX9 homologs) vs. OsGT43J (an IRX14 homolog), in xylan backbone biosynthesis.
木聚糖是水稻营养组织初生和次生细胞壁中的主要半纤维素。由于木聚糖是导致生物质难降解的因素之一,了解木聚糖在水稻中的合成方式可能会为改良更适合生物燃料生产的禾本科生物质组成提供工具。对拟南芥中木聚糖生物合成的研究表明,形成两个功能上非冗余组的GT43家族糖基转移酶,即IRX9/IRX9同源物和IRX14/IRX14同源物,是木聚糖主链延伸所必需的。水稻基因组中有10个编码GT43家族成员的基因,目前尚不清楚它们是否都参与木聚糖生物合成。在本报告中,我们对水稻茎微粒体中的木聚糖木糖基转移酶活性进行了生化分析,并研究了4个具有代表性的水稻GT43成员,即OsGT43A(LOC_Os05g03174)、OsGT43E(LOC_Os05g48600)、OsGT43H(LOC_Os04g01280)和OsGT43J(LOC_Os06g47340)在木聚糖生物合成中的作用。结果表明,OsGT43蛋白定位于木聚糖生物合成发生的高尔基体中。通过在拟南芥irx9和irx14突变体中表达OsGT43s进行互补分析表明,OsGT43A和OsGT43E能够挽救irx9突变赋予的突变体表型,包括茎机械强度缺陷、导管形态、木聚糖含量、GlcA侧链、木聚糖链长度和木糖基转移酶活性,而OsGT43H和OsGT43J则不能。另一方面,OsGT43J能够恢复irx14突变体中缺陷的木聚糖表型,而OsGT43A、OsGT43E和OsGT43H则不能。这些结果表明,水稻GT43家族进化后保留了两个功能上非冗余组的参与,即OsGT43A和OsGT43E(IRX9同源物)与OsGT43J(IRX14同源物)参与木聚糖主链生物合成。