Symbiosis Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany.
Environ Microbiol Rep. 2009 Oct;1(5):319-35. doi: 10.1111/j.1758-2229.2009.00081.x.
Symbioses between marine animals and aerobic methane-oxidizing bacteria are found at hydrothermal vents and cold seeps in the deep sea where reduced, methane-rich fluids mix with the surrounding oxidized seawater. These habitats are 'oases' in the otherwise nutrient-poor deep sea, where entire ecosystems are fueled by microbial chemosynthesis. By associating with bacteria that gain energy from the oxidation of CH4 with O2 , the animal host is indirectly able to gain nutrition from methane, an energy source that is otherwise only available to methanotrophic microorganisms. The host, in turn, provides its symbionts with continuous access to both electron acceptors and donors that are only available at a narrow oxic - anoxic interface for free-living methanotrophs. Symbiotic methane oxidizers have resisted all attempts at cultivation, so that all evidence for these symbiotic associations comes from ultrastructural, enzymatic, physiological, stable isotope and molecular biological studies of the symbiotic host tissues. In this review, we present an overview of the habitats and invertebrate hosts in which symbiotic methane oxidizers have been found, and the methods used to investigate these symbioses, focusing on the symbioses of bathymodiolin mussels that have received the most attention among methanotrophic associations.
海洋动物与好氧甲烷氧化菌之间的共生关系存在于深海热液喷口和冷泉中,在那里,还原、富含甲烷的流体与周围氧化的海水混合。这些栖息地是贫营养深海中的“绿洲”,其中整个生态系统都依赖微生物的化能合成作用来提供燃料。通过与那些从 CH4 与 O2 的氧化中获取能量的细菌共生,动物宿主可以间接地从甲烷中获取营养,而甲烷是一种只有甲烷营养微生物才能获得的能源。反过来,宿主为其共生微生物提供了连续获得电子受体和供体的机会,而这些受体和供体只有在自由生活的甲烷营养菌的狭窄好氧-缺氧界面上才可用。共生甲烷氧化菌一直抵制所有的培养尝试,因此,所有关于这些共生关系的证据都来自于对共生宿主组织的超微结构、酶学、生理学、稳定同位素和分子生物学研究。在这篇综述中,我们介绍了共生甲烷氧化菌的栖息地和无脊椎动物宿主,并重点介绍了受到最多关注的贻贝共生关系,讨论了用于研究这些共生关系的方法。