Suppr超能文献

RootNav:导航复杂根系结构图像。

RootNav: navigating images of complex root architectures.

机构信息

Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom.

出版信息

Plant Physiol. 2013 Aug;162(4):1802-14. doi: 10.1104/pp.113.221531. Epub 2013 Jun 13.

Abstract

We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach, utilizing the powerful expectation maximization classification algorithm to examine regions of the input image, calculating the likelihood that given pixels correspond to roots. This information is used as the basis for an optimization approach to root detection and quantification, which effectively fits a root model to the image data. The resulting user experience is akin to defining routes on a motorist's satellite navigation system: RootNav makes an initial optimized estimate of paths from the seed point to root apices, and the user is able to easily and intuitively refine the results using a visual approach. The proposed method is evaluated on winter wheat (Triticum aestivum) images (and demonstrated on Arabidopsis [Arabidopsis thaliana], Brassica napus, and rice [Oryza sativa]), and results are compared with manual analysis. Four exemplar traits are calculated and show clear illustrative differences between some of the wheat accessions. RootNav, however, provides the structural information needed to support extraction of a wider variety of biologically relevant measures. A separate viewer tool is provided to recover a rich set of architectural traits from RootNav's core representation.

摘要

我们提出了一种新的图像分析工具,允许对半自动定量分析以各种方式种植和成像的多种植物物种的复杂根系结构。RootNav 的自动组件采用自上而下的方法,利用强大的期望最大化分类算法来检查输入图像的区域,计算给定像素对应于根的可能性。该信息用作根检测和定量的优化方法的基础,该方法有效地将根模型拟合到图像数据中。最终用户体验类似于在驾驶员的卫星导航系统上定义路线:RootNav 从种子点到根尖初始优化估计路径,用户可以使用直观的方法轻松地直观地改进结果。该方法在冬小麦(Triticum aestivum)图像上进行了评估(并在拟南芥[Arabidopsis thaliana]、油菜[Brassica napus]和水稻[Oryza sativa]上进行了演示),并与手动分析进行了比较。计算了四个典型特征,并且在一些小麦品种之间显示出明显的差异。然而,RootNav 提供了支持提取更广泛的生物相关措施所需的结构信息。提供了一个单独的查看器工具,可从 RootNav 的核心表示中恢复丰富的结构特征。

相似文献

1
RootNav: navigating images of complex root architectures.RootNav:导航复杂根系结构图像。
Plant Physiol. 2013 Aug;162(4):1802-14. doi: 10.1104/pp.113.221531. Epub 2013 Jun 13.
8
Semi-automated Root Image Analysis (saRIA).半自动根图像分析(saRIA)。
Sci Rep. 2019 Dec 23;9(1):19674. doi: 10.1038/s41598-019-55876-3.

引用本文的文献

5
Automated seminal root angle measurement with corrective annotation.具有校正注释的自动胚根角度测量
AoB Plants. 2024 Sep 19;16(5):plae046. doi: 10.1093/aobpla/plae046. eCollection 2024 Oct.
8
Improved Transformer for Time Series Senescence Root Recognition.用于时间序列衰老根系识别的改进型Transformer
Plant Phenomics. 2024 Mar 28;6:0159. doi: 10.34133/plantphenomics.0159. eCollection 2024.

本文引用的文献

3
What lies beneath: underlying assumptions in bioimage analysis.表象之下:生物影像分析中的潜在假设。
Trends Plant Sci. 2012 Dec;17(12):688-92. doi: 10.1016/j.tplants.2012.07.003. Epub 2012 Aug 17.
6
A new tool for analysis of root growth in the spatio-temporal continuum.一种用于分析时空连续体中根系生长的新工具。
New Phytol. 2012 Jul;195(1):264-74. doi: 10.1111/j.1469-8137.2012.04149.x. Epub 2012 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验