Held Christian, Nattkemper Tim, Palmisano Ralf, Wittenberg Thomas
Department for Image Processing and Biomedical Engineering, Fraunhofer Institute for Integrated Circuits, Erlangen, Germany.
J Pathol Inform. 2013 Mar 30;4(Suppl):S5. doi: 10.4103/2153-3539.109831. Print 2013.
Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open.
In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided.
This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs.
The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.
医学和生物学中的研究与诊断常常需要评估大量的显微镜图像数据。一方面,数字病理学和新的生物成像技术已进入临床实践和药物研究领域,但自动图像分析中的一些通用方法问题仍未解决。
在本研究中,我们解决了显微镜图像分割流程中参数拟合的问题。我们建议使用优化算法(如遗传算法或坐标下降法)来拟合流程模块的参数,并展示了如何通过对参数空间的可视化探索来帮助识别需要避免的次优参数设置。
这对我们自动参数拟合框架的设计有很大帮助,该框架使我们能够针对大量显微照片调整流程。
潜在的参数空间对手动和自动参数优化都构成挑战,因为参数空间可能存在多个局部性能最大值。因此,像爬山算法这样无法跳出局部性能最大值的优化策略,往往会导致得到局部最大值。