Suppr超能文献

脂质双分子层膜形状的动力学与不稳定性

Dynamics and instabilities of lipid bilayer membrane shapes.

作者信息

Shi Zheng, Baumgart Tobias

机构信息

Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104, USA.

Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104, USA.

出版信息

Adv Colloid Interface Sci. 2014 Jun;208:76-88. doi: 10.1016/j.cis.2014.01.004. Epub 2014 Jan 25.

Abstract

Biological membranes undergo constant shape remodeling involving the formation of highly curved structures. The lipid bilayer represents the fundamental architecture of the cellular membrane with its shapes determined by the Helfrich curvature bending energy. However, the dynamics of bilayer shape transitions, especially their modulation by membrane proteins, and the resulting shape instabilities, are still not well understood. Here, we review in a unifying manner several theories that describe the fluctuations (i.e. undulations) of bilayer shapes as well as their local coupling with lipid or protein density variation. The coupling between local membrane curvature and lipid density gives rise to a 'slipping mode' in addition to the conventional 'bending mode' for damping the membrane fluctuation. This leads to a number of interesting experimental phenomena regarding bilayer shape dynamics. More importantly, curvature-inducing proteins can couple with membrane shape and eventually render the membrane unstable. A criterion for membrane shape instability is derived from a linear stability analysis. The instability criterion reemphasizes the importance of membrane tension in regulating the stability and dynamics of membrane geometry. Recent progresses in understanding the role of membrane tension in regulating dynamical cellular processes are also reviewed. Protein density is emphasized as a key factor in regulating membrane shape transitions: a threshold density of curvature coupling proteins is required for inducing membrane morphology transitions.

摘要

生物膜经历着持续的形状重塑,其中涉及高度弯曲结构的形成。脂质双层代表细胞膜的基本结构,其形状由赫尔弗里希曲率弯曲能决定。然而,双层形状转变的动力学,尤其是它们受膜蛋白的调节以及由此产生的形状不稳定性,仍然没有得到很好的理解。在这里,我们以统一的方式回顾几种理论,这些理论描述了双层形状的波动(即起伏)以及它们与脂质或蛋白质密度变化的局部耦合。局部膜曲率与脂质密度之间的耦合除了产生用于抑制膜波动的传统“弯曲模式”外,还产生了一种“滑动模式”。这导致了一些关于双层形状动力学的有趣实验现象。更重要的是,曲率诱导蛋白可以与膜形状耦合,最终使膜不稳定。通过线性稳定性分析得出了膜形状不稳定性的判据。该不稳定性判据再次强调了膜张力在调节膜几何形状的稳定性和动力学方面的重要性。本文还回顾了在理解膜张力在调节动态细胞过程中的作用方面的最新进展。蛋白质密度被强调为调节膜形状转变的关键因素:诱导膜形态转变需要曲率耦合蛋白的阈值密度。

相似文献

1
Dynamics and instabilities of lipid bilayer membrane shapes.脂质双分子层膜形状的动力学与不稳定性
Adv Colloid Interface Sci. 2014 Jun;208:76-88. doi: 10.1016/j.cis.2014.01.004. Epub 2014 Jan 25.
4
Nonlocal membrane bending: a reflection, the facts and its relevance.非局域膜弯曲:一种反思、事实及其相关性。
Adv Colloid Interface Sci. 2014 Jun;208:189-96. doi: 10.1016/j.cis.2014.01.010. Epub 2014 Jan 24.
6
Recent developments in the field of bending rigidity measurements on membranes.近期膜弯曲刚性测量领域的发展。
Adv Colloid Interface Sci. 2014 Jun;208:225-34. doi: 10.1016/j.cis.2014.03.003. Epub 2014 Mar 13.
7
Membrane curvature at a glance.膜曲率一览。
J Cell Sci. 2015 Mar 15;128(6):1065-70. doi: 10.1242/jcs.114454.
10
Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales.膜曲率重构的生物物理:从分子到介观尺度。
J Phys Condens Matter. 2018 Jul 11;30(27):273001. doi: 10.1088/1361-648X/aac702. Epub 2018 May 22.

引用本文的文献

9
The Mechanics and Thermodynamics of Tubule Formation in Biological Membranes.生物膜中管状结构形成的力学和热力学。
J Membr Biol. 2021 Jun;254(3):273-291. doi: 10.1007/s00232-020-00164-9. Epub 2021 Jan 19.

本文引用的文献

2
Ultrafast endocytosis at mouse hippocampal synapses.小鼠海马突触的超快内吞作用。
Nature. 2013 Dec 12;504(7479):242-247. doi: 10.1038/nature12809. Epub 2013 Dec 4.
3
Linear aggregation of proteins on the membrane as a prelude to membrane remodeling.蛋白质在膜上的线性聚集作为膜重塑的前奏。
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20396-401. doi: 10.1073/pnas.1309819110. Epub 2013 Nov 27.
7
Membrane viscosity determined from shear-driven flow in giant vesicles.从巨囊泡的剪切驱动流中测定膜粘度。
Phys Rev Lett. 2013 Jul 19;111(3):038103. doi: 10.1103/PhysRevLett.111.038103. Epub 2013 Jul 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验