ELEGI/Colt Laboratories, University of Edinburgh, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
Curr Opin Biotechnol. 2013 Aug;24(4):724-34. doi: 10.1016/j.copbio.2013.05.003. Epub 2013 Jun 11.
The analysis of nanoparticle (NP) hazard is currently a major research pre-occupation for particle toxicologists since there is a pressing requirement for a comprehensive understanding of nanoparticle hazard because of the wide spectrum of NP varying in composition, shape and size that require testing for risk assessment. The Biologically Effective Doses (BEDs) of nanoparticles, the dose entity that drives toxicity include charge, solubility, contaminants, shape and the ability to translocate from the site of deposition in the lungs. We point out here that all of these modes of toxicity are relevant and described for conventional pathogenic particles. There is no evidence that particles below 100nm, the threshold definition of a NP, show any step-change in their hazard meaning that there is no evidence of novel 'nano-specific hazard'. Therefore conventional particle toxicology data are useful and relevant to the determination of the nanoparticle hazard. Emphasis away from 'nano-specific effects' and the availability of hazard data from conventional particles will focus limited resource towards a full understanding of the NP hazard. This will lead to improved ability to identify and test for their effects and measure their toxicokinetics and so contribute to their risk assessment.
目前,纳米颗粒(NP)危害分析是颗粒毒理学家的主要研究重点,因为需要全面了解纳米颗粒危害,这是因为 NP 的组成、形状和大小范围广泛,需要进行风险评估测试。作为驱动毒性的生物有效剂量(BED),纳米颗粒的剂量实体包括电荷、溶解度、污染物、形状以及从肺部沉积部位转移的能力。我们在这里指出,所有这些毒性模式都与传统的致病颗粒相关,并对其进行了描述。没有证据表明 100nm 以下的颗粒(NP 的阈值定义)在其危害方面有任何明显的变化,这意味着没有证据表明存在新型的“纳米特定危害”。因此,传统的颗粒毒理学数据对于确定纳米颗粒的危害是有用且相关的。将重点从“纳米特定效应”上转移开,并从传统颗粒中获取危害数据,将把有限的资源集中在充分了解 NP 危害上。这将有助于提高识别和测试其影响的能力,并测量其毒代动力学,从而为其风险评估做出贡献。