Ma Haoran, Fujioka Hideki, Halpern David, Gaver Donald P
Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States.
Center for Computational Science, Tulane University, New Orleans, LA, United States.
Front Physiol. 2020 Aug 14;11:941. doi: 10.3389/fphys.2020.00941. eCollection 2020.
We present a computational multi-scale model of an adult human lung that combines dynamic surfactant physicochemical interactions and parenchymal tethering between ~16 generations of airways and subtended acini. This model simulates the healthy lung by modeling nonlinear stress distributions from airway/alveolar interdependency. In concert with multi-component surfactant transport processes, this serves to stabilize highly compliant interacting structures. This computational model, with ~10 k degrees of freedom, demonstrates physiological processes in the normal lung such as multi-layer surfactant transport and pressure-volume hysteresis behavior. Furthermore, this model predicts non-equilibrium stress distributions due to compliance mismatches between airway and alveolar structures. This computational model provides a baseline for the exploration of multi-scale interactions of pathological conditions that can further our understanding of disease processes and guide the development of protective ventilation strategies for the treatment of acute respiratory distress syndrome (ARDS).
我们提出了一个成年人类肺部的计算多尺度模型,该模型结合了动态表面活性剂的物理化学相互作用以及约16代气道与所支撑的腺泡之间的实质束缚。该模型通过对气道/肺泡相互依存关系产生的非线性应力分布进行建模来模拟健康肺部。与多组分表面活性剂传输过程协同作用,这有助于稳定高度顺应性的相互作用结构。这个具有约10000个自由度的计算模型展示了正常肺部的生理过程,如多层表面活性剂传输和压力-容积滞后行为。此外,该模型预测了由于气道和肺泡结构之间的顺应性不匹配而导致的非平衡应力分布。这个计算模型为探索病理状况的多尺度相互作用提供了一个基线,有助于我们进一步理解疾病过程,并指导急性呼吸窘迫综合征(ARDS)治疗中保护性通气策略的开发。