Suppr超能文献

石墨烯中超快共线散射和载流子倍增。

Ultrafast collinear scattering and carrier multiplication in graphene.

机构信息

IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, P.za Leonardo da Vinci, 20133 Milano, Italy.

出版信息

Nat Commun. 2013;4:1987. doi: 10.1038/ncomms2987.

Abstract

Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.

摘要

石墨烯作为传统光电、等离子体和纳米光子学材料的可行替代品正在出现。光与电荷载流子的相互作用会产生非平衡分布,这种非平衡分布会在超快时间尺度上弛豫到热费米-狄拉克分布,随后会通过发射声子来冷却。尽管较慢的弛豫机制已经得到了广泛的研究,但初始阶段仍然是一个挑战。在实验中,由于超快的亚 100fs 的载流子动力学,它们超出了大多数泵浦探测装置的分辨率。从理论上讲,无质量的狄拉克费米子代表了一种新型的多体问题,与薛定谔费米子有根本的不同。在这里,我们将泵浦探测光谱学与微观理论相结合,研究了在弛豫的早期阶段电子-电子相互作用。我们确定了控制超快动力学的机制,特别是共线散射的作用。这导致了包括电荷倍增在内的俄歇过程,这在光伏电压产生和光电探测器中是关键的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验