Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore.
ACS Nano. 2014 Oct 28;8(10):10931-40. doi: 10.1021/nn504760x. Epub 2014 Oct 2.
Femtosecond optical pump-probe spectroscopy with 10 fs visible pulses is employed to elucidate the ultrafast carrier dynamics of few-layer MoS2. A nonthermal carrier distribution is observed immediately following the photoexcitation of the A and B excitonic transitions by the ultrashort, broadband laser pulse. Carrier thermalization occurs within 20 fs and proceeds via both carrier-carrier and carrier-phonon scattering, as evidenced by the observed dependence of the thermalization time on the carrier density and the sample temperature. The n(-0.37 ± 0.03) scaling of the thermalization time with carrier density suggests that equilibration of the nonthermal carrier distribution occurs via non-Markovian quantum kinetics. Subsequent cooling of the hot Fermi-Dirac carrier distribution occurs on the ∼ 0.6 ps time scale via carrier-phonon scattering. Temperature- and fluence-dependence studies reveal the involvement of hot phonons in the carrier cooling process. Nonadiabatic ab initio molecular dynamics simulations, which predict carrier-carrier and carrier-phonon scattering time scales of 40 fs and 0.5 ps, respectively, lend support to the assignment of the observed carrier dynamics.
飞秒光学泵浦探测光谱学与 10 fs 可见光脉冲一起用于阐明少层 MoS2 的超快载流子动力学。在超短、宽带激光脉冲激发 A 和 B 激子跃迁后,立即观察到非热载流子分布。载流子热化在 20 fs 内发生,并且通过载流子-载流子和载流子-声子散射进行,这由热化时间对载流子密度和样品温度的观察依赖性证明。热化时间与载流子密度的 n(-0.37 ± 0.03)标度表明,非热载流子分布的平衡通过非马尔可夫量子动力学发生。通过载流子-声子散射,随后在 ∼ 0.6 ps 的时间尺度上发生热费米-狄拉克载流子分布的冷却。温度和强度依赖性研究表明,热声子参与了载流子冷却过程。非绝热从头算分子动力学模拟分别预测了载流子-载流子和载流子-声子散射的时间尺度为 40 fs 和 0.5 ps,这支持了观察到的载流子动力学的分配。