IEEE Trans Biomed Eng. 2013 Oct;60(10):2967-77. doi: 10.1109/TBME.2013.2267212. Epub 2013 Jun 10.
In computed tomography of liver tumors there is often heterogeneous density, weak boundaries, and the liver tumors are surrounded by other abdominal structures with similar densities. These pose limitations to accurate the hepatic tumor segmentation. We propose a level set model incorporating likelihood energy with the edge energy. The minimization of the likelihood energy approximates the density distribution of the target and the multimodal density distribution of the background that can have multiple regions. In the edge energy formulation, our edge detector preserves the ramp associated with the edges for weak boundaries. We compared our approach to the Chan-Vese and the geodesic level set models and the manual segmentation performed by clinical experts. The Chan-Vese model was not successful in segmenting hepatic tumors and our model outperformed the geodesic level set model. Our results on 18 clinical datasets showed that our algorithm had a Jaccard distance error of 14.4 ± 5.3%, relative volume difference of -8.1 ± 2.1%, average surface distance of 2.4 ± 0.8 mm, RMS surface distance of 2.9 ± 0.7 mm, and the maximum surface distance of 7.2 ± 3.1 mm.
在肝脏肿瘤的计算机断层扫描中,常常存在密度不均匀、边界较弱的情况,并且肝脏肿瘤周围的其他腹部结构具有相似的密度。这些因素限制了肝脏肿瘤的准确分割。我们提出了一种结合似然能和边缘能的水平集模型。似然能的最小化可以近似目标的密度分布和具有多个区域的背景的多峰密度分布。在边缘能公式中,我们的边缘检测器保留了与弱边界相关的斜坡。我们将我们的方法与 Chan-Vese 和测地线水平集模型以及临床专家进行的手动分割进行了比较。Chan-Vese 模型在分割肝脏肿瘤方面并不成功,而我们的模型优于测地线水平集模型。我们在 18 个临床数据集上的结果表明,我们的算法的雅可比距离误差为 14.4 ± 5.3%,相对体积差异为-8.1 ± 2.1%,平均表面距离为 2.4 ± 0.8mm,均方根表面距离为 2.9 ± 0.7mm,最大表面距离为 7.2 ± 3.1mm。