Department of Software Engineering, Harbin University of Science and Technology, No. 2006, Xueyuan Road, Shandong Province, Rongcheng City, 264300, China.
School of Automation, Harbin University of Science and Technology, Harbin, 150080, China.
J Digit Imaging. 2022 Dec;35(6):1479-1493. doi: 10.1007/s10278-022-00668-x. Epub 2022 Jun 16.
This paper proposes a new network framework, which leverages EfficientNetB4, attention gate, and residual learning techniques to achieve automatic and accurate liver segmentation. First, we use EfficientNetB4 as the encoder to extract more feature information during the encoding stage. Then, an attention gate is introduced in the skip connection to eliminate irrelevant regions and highlight features of a specific segmentation task. Finally, to alleviate the problem of gradient vanishment, we replace the traditional convolution of the decoder with a residual block to improve the segmentation accuracy. We verified the proposed method on the LiTS17 and SLiver07 datasets and compared it with classical networks such as FCN, U-Net, attention U-Net, and attention Res-U-Net. In the Sliver07 evaluation, the proposed method achieved the best segmentation performance on all five standard metrics. Meanwhile, in the LiTS17 assessment, the best performance is obtained except for a slight inferior on RVD. The proposed method's qualitative and quantitative results demonstrated its applicability in liver segmentation and proved its good prospect in computer-assisted liver segmentation.
本文提出了一种新的网络框架,该框架利用 EfficientNetB4、注意力门和残差学习技术实现了肝脏的自动、准确分割。首先,我们使用 EfficientNetB4 作为编码器,在编码阶段提取更多的特征信息。然后,在跳连接处引入注意力门,以消除不相关区域并突出特定分割任务的特征。最后,为了缓解梯度消失问题,我们用残差块替换解码器中的传统卷积,以提高分割精度。我们在 LiTS17 和 SLiver07 数据集上验证了所提出的方法,并与 FCN、U-Net、注意力 U-Net 和注意力 Res-U-Net 等经典网络进行了比较。在 Sliver07 评估中,所提出的方法在所有五个标准指标上都取得了最佳的分割性能。同时,在 LiTS17 评估中,除了 RVD 略有下降外,该方法获得了最佳性能。所提出的方法的定性和定量结果表明了其在肝脏分割中的适用性,并证明了其在计算机辅助肝脏分割中的良好前景。