Suppr超能文献

基于 EfficientNet 和注意力残差 U-Net 的 CT 肝脏自动分割。

Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT.

机构信息

Department of Software Engineering, Harbin University of Science and Technology, No. 2006, Xueyuan Road, Shandong Province, Rongcheng City, 264300, China.

School of Automation, Harbin University of Science and Technology, Harbin, 150080, China.

出版信息

J Digit Imaging. 2022 Dec;35(6):1479-1493. doi: 10.1007/s10278-022-00668-x. Epub 2022 Jun 16.

Abstract

This paper proposes a new network framework, which leverages EfficientNetB4, attention gate, and residual learning techniques to achieve automatic and accurate liver segmentation. First, we use EfficientNetB4 as the encoder to extract more feature information during the encoding stage. Then, an attention gate is introduced in the skip connection to eliminate irrelevant regions and highlight features of a specific segmentation task. Finally, to alleviate the problem of gradient vanishment, we replace the traditional convolution of the decoder with a residual block to improve the segmentation accuracy. We verified the proposed method on the LiTS17 and SLiver07 datasets and compared it with classical networks such as FCN, U-Net, attention U-Net, and attention Res-U-Net. In the Sliver07 evaluation, the proposed method achieved the best segmentation performance on all five standard metrics. Meanwhile, in the LiTS17 assessment, the best performance is obtained except for a slight inferior on RVD. The proposed method's qualitative and quantitative results demonstrated its applicability in liver segmentation and proved its good prospect in computer-assisted liver segmentation.

摘要

本文提出了一种新的网络框架,该框架利用 EfficientNetB4、注意力门和残差学习技术实现了肝脏的自动、准确分割。首先,我们使用 EfficientNetB4 作为编码器,在编码阶段提取更多的特征信息。然后,在跳连接处引入注意力门,以消除不相关区域并突出特定分割任务的特征。最后,为了缓解梯度消失问题,我们用残差块替换解码器中的传统卷积,以提高分割精度。我们在 LiTS17 和 SLiver07 数据集上验证了所提出的方法,并与 FCN、U-Net、注意力 U-Net 和注意力 Res-U-Net 等经典网络进行了比较。在 Sliver07 评估中,所提出的方法在所有五个标准指标上都取得了最佳的分割性能。同时,在 LiTS17 评估中,除了 RVD 略有下降外,该方法获得了最佳性能。所提出的方法的定性和定量结果表明了其在肝脏分割中的适用性,并证明了其在计算机辅助肝脏分割中的良好前景。

相似文献

10
Dense gate network for biomedical image segmentation.密集门网络用于生物医学图像分割。
Int J Comput Assist Radiol Surg. 2020 Aug;15(8):1247-1255. doi: 10.1007/s11548-020-02138-7. Epub 2020 Apr 8.

引用本文的文献

本文引用的文献

1
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
4
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
5
Cancer statistics, 2020.癌症统计数据,2020 年。
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验