Suppr超能文献

使用深度学习模型改善肝脏肿瘤图像的自动分割

Improving automatic segmentation of liver tumor images using a deep learning model.

作者信息

Song Zhendong, Wu Huiming, Chen Wei, Slowik Adam

机构信息

School of Mechanical and Electrical Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.

Koszalin University of Technology, Koszalin, Poland.

出版信息

Heliyon. 2024 Mar 21;10(7):e28538. doi: 10.1016/j.heliyon.2024.e28538. eCollection 2024 Apr 15.

Abstract

Liver tumors are one of the most aggressive malignancies in the human body. Computer-aided technology and liver interventional surgery are effective in the prediction, identification and management of liver neoplasms. One of the important processes is to accurately grasp the morphological structure of the liver and liver blood vessels. However, accurate identification and segmentation of hepatic blood vessels in CT images poses a formidable challenge. Manually locating and segmenting liver vessels in CT images is time-consuming and impractical. There is an imperative clinical requirement for a precise and effective algorithm to segment liver vessels. In response to this demand, the current paper advocates a liver vessel segmentation approach that employs an enhanced 3D fully convolutional neural network V-Net. The network model improves the basic network structure according to the characteristics of liver vessels. First, a pyramidal convolution block is introduced between the encoder and decoder of the network to improve the network localization ability. Then, multi-resolution deep supervision is introduced in the network, resulting in more robust segmentation. Finally, by fusing feature maps of different resolutions, the overall segmentation result is predicted. Evaluation experiments on public datasets demonstrate that our improved scheme can increase the segmentation ability of existing network models for liver vessels. Compared with the existing work, the experimental outcomes demonstrate that the technique presented in this manuscript has attained superior performance on the Dice Coefficient index, which can promote the treatment of liver tumors.

摘要

肝脏肿瘤是人体中最具侵袭性的恶性肿瘤之一。计算机辅助技术和肝脏介入手术在肝脏肿瘤的预测、识别和管理方面是有效的。其中一个重要过程是准确掌握肝脏和肝血管的形态结构。然而,在CT图像中准确识别和分割肝血管是一项艰巨的挑战。在CT图像中手动定位和分割肝血管既耗时又不切实际。临床上迫切需要一种精确有效的算法来分割肝血管。针对这一需求,本文提出了一种采用增强型3D全卷积神经网络V-Net的肝血管分割方法。该网络模型根据肝血管的特征改进了基本网络结构。首先,在网络的编码器和解码器之间引入金字塔卷积块,以提高网络的定位能力。然后,在网络中引入多分辨率深度监督,从而实现更稳健的分割。最后,通过融合不同分辨率的特征图来预测整体分割结果。在公共数据集上的评估实验表明,我们改进后的方案可以提高现有网络模型对肝血管的分割能力。与现有工作相比,实验结果表明本文提出的技术在骰子系数指标上取得了优异的性能,这有助于促进肝脏肿瘤的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d250/10988037/23088be96d7f/gr1.jpg

相似文献

1
Improving automatic segmentation of liver tumor images using a deep learning model.
Heliyon. 2024 Mar 21;10(7):e28538. doi: 10.1016/j.heliyon.2024.e28538. eCollection 2024 Apr 15.
2
Hepatic and portal vein segmentation with dual-stream deep neural network.
Med Phys. 2024 Aug;51(8):5441-5456. doi: 10.1002/mp.17090. Epub 2024 Apr 22.
4
Liver vessel segmentation based on inter-scale V-Net.
Math Biosci Eng. 2021 May 18;18(4):4327-4340. doi: 10.3934/mbe.2021217.
6
HPM-Net: Hierarchical progressive multiscale network for liver vessel segmentation in CT images.
Comput Methods Programs Biomed. 2022 Sep;224:107003. doi: 10.1016/j.cmpb.2022.107003. Epub 2022 Jul 7.
7
Two-Stage Liver and Tumor Segmentation Algorithm Based on Convolutional Neural Network.
Diagnostics (Basel). 2021 Sep 29;11(10):1806. doi: 10.3390/diagnostics11101806.
8
Curv-Net: Curvilinear structure segmentation network based on selective kernel and multi-Bi-ConvLSTM.
Med Phys. 2022 May;49(5):3144-3158. doi: 10.1002/mp.15546. Epub 2022 Feb 25.
10
VesselNet: A deep convolutional neural network with multi pathways for robust hepatic vessel segmentation.
Comput Med Imaging Graph. 2019 Jul;75:74-83. doi: 10.1016/j.compmedimag.2019.05.002. Epub 2019 Jun 1.

引用本文的文献

1
Accurate and robust segmentation of cerebral distal small arteries by DVNet with dual contextual path and vascular attention enhancement.
Quant Imaging Med Surg. 2025 Feb 1;15(2):1468-1479. doi: 10.21037/qims-24-1514. Epub 2025 Jan 21.
2
Current State of Evidence for Use of MRI in LI-RADS.
J Magn Reson Imaging. 2025 Sep;62(3):640-653. doi: 10.1002/jmri.29748. Epub 2025 Feb 21.
3
Artificial intelligence techniques in liver cancer.
Front Oncol. 2024 Sep 3;14:1415859. doi: 10.3389/fonc.2024.1415859. eCollection 2024.

本文引用的文献

1
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.
Proc IEEE Inst Electr Electron Eng. 2021 May;109(5):820-838. doi: 10.1109/JPROC.2021.3054390. Epub 2021 Feb 26.
2
3D Graph-Connectivity Constrained Network for Hepatic Vessel Segmentation.
IEEE J Biomed Health Inform. 2022 Mar;26(3):1251-1262. doi: 10.1109/JBHI.2021.3118104. Epub 2022 Mar 7.
3
Convolutional neural networks in medical image understanding: a survey.
Evol Intell. 2022;15(1):1-22. doi: 10.1007/s12065-020-00540-3. Epub 2021 Jan 3.
4
DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes.
Front Neurosci. 2020 Dec 8;14:592352. doi: 10.3389/fnins.2020.592352. eCollection 2020.
5
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
6
Liver segmentation from abdominal CT volumes based on level set and sparse shape composition.
Comput Methods Programs Biomed. 2020 Oct;195:105533. doi: 10.1016/j.cmpb.2020.105533. Epub 2020 May 22.
7
Deep vessel segmentation by learning graphical connectivity.
Med Image Anal. 2019 Dec;58:101556. doi: 10.1016/j.media.2019.101556. Epub 2019 Sep 6.
8
Adaptive Feature Recombination and Recalibration for Semantic Segmentation With Fully Convolutional Networks.
IEEE Trans Med Imaging. 2019 Dec;38(12):2914-2925. doi: 10.1109/TMI.2019.2918096. Epub 2019 May 20.
9
Medical image classification using synergic deep learning.
Med Image Anal. 2019 May;54:10-19. doi: 10.1016/j.media.2019.02.010. Epub 2019 Feb 18.
10
A Unified Level Set Framework Combining Hybrid Algorithms for Liver and Liver Tumor Segmentation in CT Images.
Biomed Res Int. 2018 Aug 9;2018:3815346. doi: 10.1155/2018/3815346. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验