Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Pasteur st. 4, 400349, Cluj-Napoca, Romania.
Anal Bioanal Chem. 2014 Feb;406(4):1141-7. doi: 10.1007/s00216-013-7135-3. Epub 2013 Jun 21.
We report the combination of latex nanosphere lithography with electropolymerization of N-substituted pyrrole monomer bearing a nitrilotriacetic acid (NTA) moiety for the template-assisted nanostructuration of poly(pyrrole-NTA) films and their application for biomolecule immobilization. The electrodes were modified by casting latex beads (100 or 900 nm in diameter) on their surface followed by electropolymerization of the pyrrole-NTA monomer and the subsequent chelation of Cu(2+) ions. The dissolution of the nanobeads leads then to a nanostructured polymer film with increased surface. Thanks to the versatile affinity interactions between the (NTA)Cu(2+) complex and histidine- or biotin-tagged proteins, both tyrosinase and glucose oxidase were immobilized on the modified electrode. Nanostructuration of the polypyrrole via nanosphere lithography (NSL) using 900- and 100-nm latex beads allows an increase in surface concentration of enzymes anchored on the functionalized polypyrrole electrode. The nanostructured enzyme electrodes were characterized by fluorescence microscopy, 3D laser scanning confocal microscopy, and scanning electron microscopy. Electrochemical studies demonstrate the increase in the amount of immobilized biomolecules and associated biosensor performances when achieving NSL compared to conventional polymer formation without bead template. In addition, the decrease in nanobead diameter from 900 to 100 nm provides an enhancement in biosensor performance. Between biosensors based on films polymerized without nanobeads and with 100-nm nanobeads, maximum current density values increase from 4 to 56 μA cm(-2) and from 7 to 45 μA cm(-2) for biosensors based on tyrosinase and glucose oxidase, respectively.
我们报告了乳胶纳米球光刻与带有三氮杂乙酸(NTA)部分的 N-取代吡咯单体的电聚合相结合,用于模板辅助聚(吡咯-NTA)薄膜的纳米结构化及其在生物分子固定化中的应用。通过在电极表面铸造乳胶珠(直径为 100 或 900nm),然后电聚合吡咯-NTA 单体并随后螯合 Cu(2+)离子,对电极进行修饰。然后,纳米珠的溶解导致具有增加表面的纳米结构化聚合物膜。由于(NTA)Cu(2+)配合物与组氨酸或生物素标记的蛋白质之间的多功能亲和相互作用,酪氨酸酶和葡萄糖氧化酶都被固定在修饰的电极上。通过使用 900nm 和 100nm 乳胶珠的纳米球光刻(NSL)对聚吡咯进行纳米结构化,允许固定在功能化聚吡咯电极上的酶的表面浓度增加。通过荧光显微镜、3D 激光扫描共聚焦显微镜和扫描电子显微镜对纳米结构化酶电极进行了表征。电化学研究表明,与没有珠模板的常规聚合物形成相比,通过 NSL 实现时,固定化生物分子的量和相关生物传感器性能增加。此外,纳米珠直径从 900nm 减小到 100nm 提供了生物传感器性能的提高。在没有纳米珠的薄膜聚合的基于生物传感器和具有 100nm 纳米珠的基于生物传感器之间,基于酪氨酸酶和葡萄糖氧化酶的生物传感器的最大电流密度值分别从 4 增加到 56μA cm(-2)和从 7 增加到 45μA cm(-2)。