Suppr超能文献

大脑和语言数据之间的结构相似性为大脑中的语义关系提供了证据。

Structural similarities between brain and linguistic data provide evidence of semantic relations in the brain.

机构信息

School of Computing and Communications, Lancaster University, Lancaster, United Kingdom.

出版信息

PLoS One. 2013 Jun 14;8(6):e65366. doi: 10.1371/journal.pone.0065366. Print 2013.

Abstract

This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model.

摘要

本文提出了一种新的分析方法,可在语义层面评估大脑数据与语言数据之间的结构相似性。它展示了如何衡量这些结构相似性的强度,从而确定大脑数据与一个语义模型相比,与另一个语义模型的相对拟合程度更好。第一个模型源自词汇数据库 WordNet,该数据库由语言专家编写。第二个模型由基于语料库的统计技术——潜在语义分析(LSA)给出,该技术检测文本中潜在或隐藏的单词之间的关系。大脑数据来自于这样的实验:向参与者听觉呈现关于欧洲地理的陈述,要求他们在进行脑电图(EEG)记录的同时判断陈述的真假。对大脑和语义数据的分析的理论框架源自于差异效用偏好理论等理论的公理化。使用与每个单词呈现时间锁定的个体试验的大脑数据样本,对大脑数据和语言数据进行相似差异的顺序关系计算。在每种情况下,与大脑和语言数据不变的关系,并且与足够的统计强度相关的关系,相当于大脑和语言数据之间的结构相似性。结果表明,与基于 LSA 的数据相比,大脑数据与 WordNet 衍生数据之间可以找到更多具有统计学意义的结构相似性。本文所报道的工作是在语义和大脑的其他近期研究背景下进行的。本文的主要贡献是提出了一种新的语义和大脑研究方法,并允许关注大脑数据中检测到的关系网络以及由语义模型表示的关系网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26dd/3682999/b6126d97dd6e/pone.0065366.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验