Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
PLoS One. 2013 Jun 14;8(6):e65862. doi: 10.1371/journal.pone.0065862. Print 2013.
Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable.
This study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching.
We obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with 91.18% detection of spikes and 99.22% seizure detection.
We report a de novo EEG classification system for seizure and spike detection on multichannel EEG that includes physiology-based knowledge to enhance the performance of this type of system.
癫痫是一种常见的慢性神经系统疾病,其特征是反复发作的无诱因癫痫发作。脑电图(EEG)信号在癫痫诊断中起着至关重要的作用。多通道 EEG 比单通道 EEG 包含更多信息。传统上,针对棘波或癫痫发作的自动检测算法是在单通道 EEG 上实现的,而多通道 EEG 的算法则不可用。
本研究提出了一种基于生理学的癫痫发作检测系统,该系统使用多通道 EEG 信号。该技术在从 18 名患者采集的两个 EEG 数据集上进行了测试。对单极和双极 EEG 信号进行了分析。我们采用样本熵(SampEn)、统计值以及临床神经生理学中使用的概念(例如双极 EEG 的相位反转和电位场)来提取特征。我们进一步测试了遗传算法与支持向量机级联和后分类尖峰匹配的性能。
我们获得了数据集 I 中 86.69%的棘波检测和 99.77%的癫痫发作检测。该检测系统进一步在数据集 II 上使用数据集 I 训练的模型进行了验证。该系统再次表现出了较高的性能,其棘波检测率为 91.18%,癫痫发作检测率为 99.22%。
我们报告了一种新的基于多通道 EEG 的癫痫和棘波检测的 EEG 分类系统,该系统包括基于生理学的知识,以提高此类系统的性能。