Smolensky Paul, Goldrick Matthew, Mathis Donald
Department of Cognitive Science, Johns Hopkins University.
Cogn Sci. 2014 Aug;38(6):1102-38. doi: 10.1111/cogs.12047. Epub 2013 Jun 26.
Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The framework we introduce here, Gradient Symbol Processing, characterizes the emergence of grammatical macrostructure from the Parallel Distributed Processing microstructure (McClelland, Rumelhart, & The PDP Research Group, 1986) of language processing. The mental representations that emerge, Distributed Symbol Systems, have both combinatorial and gradient structure. They are processed through Subsymbolic Optimization-Quantization, in which an optimization process favoring representations that satisfy well-formedness constraints operates in parallel with a distributed quantization process favoring discrete symbolic structures. We apply a particular instantiation of this framework, λ-Diffusion Theory, to phonological production. Simulations of the resulting model suggest that Gradient Symbol Processing offers a way to unify accounts of grammatical competence with both discrete and continuous patterns in language performance.
心理表征具有连续以及离散的、组合的属性。例如,语音表征虽然主要是离散的,但也会连续变化;这在言语产生的工具性研究中的梯度效应中得到了体现。一个综合的理论框架能否兼顾结构的这两个方面呢?我们在此介绍的框架——梯度符号处理,刻画了语法宏观结构从语言处理的并行分布式处理微观结构(麦克莱兰、鲁梅尔哈特和PDP研究小组,1986年)中产生的过程。所产生的心理表征,即分布式符号系统,具有组合结构和梯度结构。它们通过亚符号优化量化进行处理,在这个过程中,一个有利于满足合式性约束的表征的优化过程与一个有利于离散符号结构的分布式量化过程并行运作。我们将这个框架的一个特定实例,即λ-扩散理论,应用于语音产生。对所得模型的模拟表明,梯度符号处理提供了一种方法,能够将语法能力的解释与语言表现中的离散和连续模式统一起来。