Xu Zhoubing, Burke Ryan P, Lee Christopher P, Baucom Rebeccah B, Poulose Benjamin K, Abramson Richard G, Landman Bennett A
Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
Med Image Anal. 2015 Aug;24(1):18-27. doi: 10.1016/j.media.2015.05.009. Epub 2015 May 21.
Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining.
鉴于人类腹部的个体间差异以及器官之间复杂的三维关系,在临床获取的计算机断层扫描(CT)上进行腹部分割一直是一个具有挑战性的问题。多图谱分割(MAS)通过图像配准和统计融合利用标签图谱提供了一种潜在的可靠解决方案。我们认为,在存在大量配准误差的情况下,图谱选择的效率需要进一步探索。性能水平估计的选择性迭代方法(SIMPLE)是一种集成了图谱选择和标签融合的MAS技术,已被证明在前列腺放射治疗计划中有效。在此,我们重新审视使用临床获取的CT分割12个腹部结构的图谱选择和融合技术。使用重新推导的SIMPLE算法,我们表明,通过贝叶斯先验(所谓的上下文学习)考虑外部信息,可以提高多器官分类的性能。这些创新与联合标签融合(JLF)方法相结合,以减少每个器官所选图谱之间相关误差的影响,并使用图割技术对组合分割进行正则化。在对100名受试者的研究中,所提出的方法优于其他可比的MAS方法,包括多数投票、SIMPLE、JLF和Wolz局部加权投票技术。所提出的技术相对于现有方法有持续的改进(在DSC方面,分别比JLF和Wolz中位数提高7.0%和16.2%),并朝着为生物标志物筛查、手术导航和数据挖掘对大规模临床获取的CT数据进行高效分割迈进。