Suppr超能文献

基于简单上下文学习的临床采集CT图像的高效多图谱腹部分割

Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.

作者信息

Xu Zhoubing, Burke Ryan P, Lee Christopher P, Baucom Rebeccah B, Poulose Benjamin K, Abramson Richard G, Landman Bennett A

机构信息

Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Med Image Anal. 2015 Aug;24(1):18-27. doi: 10.1016/j.media.2015.05.009. Epub 2015 May 21.

Abstract

Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining.

摘要

鉴于人类腹部的个体间差异以及器官之间复杂的三维关系,在临床获取的计算机断层扫描(CT)上进行腹部分割一直是一个具有挑战性的问题。多图谱分割(MAS)通过图像配准和统计融合利用标签图谱提供了一种潜在的可靠解决方案。我们认为,在存在大量配准误差的情况下,图谱选择的效率需要进一步探索。性能水平估计的选择性迭代方法(SIMPLE)是一种集成了图谱选择和标签融合的MAS技术,已被证明在前列腺放射治疗计划中有效。在此,我们重新审视使用临床获取的CT分割12个腹部结构的图谱选择和融合技术。使用重新推导的SIMPLE算法,我们表明,通过贝叶斯先验(所谓的上下文学习)考虑外部信息,可以提高多器官分类的性能。这些创新与联合标签融合(JLF)方法相结合,以减少每个器官所选图谱之间相关误差的影响,并使用图割技术对组合分割进行正则化。在对100名受试者的研究中,所提出的方法优于其他可比的MAS方法,包括多数投票、SIMPLE、JLF和Wolz局部加权投票技术。所提出的技术相对于现有方法有持续的改进(在DSC方面,分别比JLF和Wolz中位数提高7.0%和16.2%),并朝着为生物标志物筛查、手术导航和数据挖掘对大规模临床获取的CT数据进行高效分割迈进。

相似文献

3
SIMPLE is a good idea (and better with context learning).简单是个好主意(结合上下文学习会更好)。
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):364-71. doi: 10.1007/978-3-319-10404-1_46.
6
Segmentation of liver and spleen based on computational anatomy models.基于计算解剖模型的肝脏和脾脏分割
Comput Biol Med. 2015 Dec 1;67:146-60. doi: 10.1016/j.compbiomed.2015.10.007. Epub 2015 Oct 28.

引用本文的文献

3
The Liver Tumor Segmentation Benchmark (LiTS).肝脏肿瘤分割基准(LiTS)。
Med Image Anal. 2023 Feb;84:102680. doi: 10.1016/j.media.2022.102680. Epub 2022 Nov 17.
8
Prediction of Type II Diabetes Onset with Computed Tomography and Electronic Medical Records.利用计算机断层扫描和电子病历预测2型糖尿病的发病
Multimodal Learn Clin Decis Support Clin Image Based Proc (2020). 2020 Oct;12445:13-23. doi: 10.1007/978-3-030-60946-7_2. Epub 2020 Oct 1.
10
Outlier Guided Optimization of Abdominal Segmentation.基于离群值引导的腹部分割优化
Proc SPIE Int Soc Opt Eng. 2020;11313. doi: 10.1117/12.2549365. Epub 2020 Mar 10.

本文引用的文献

2
SIMPLE is a good idea (and better with context learning).简单是个好主意(结合上下文学习会更好)。
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):364-71. doi: 10.1007/978-3-319-10404-1_46.
7
Multi-Atlas Segmentation with Joint Label Fusion.基于联合标签融合的多图谱分割
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
9
Hierarchical scale-based multiobject recognition of 3-D anatomical structures.基于层次尺度的 3D 解剖结构的多目标识别。
IEEE Trans Med Imaging. 2012 Mar;31(3):777-89. doi: 10.1109/TMI.2011.2180920. Epub 2011 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验