Suppr超能文献

纳米尺度下结构控制的挑战:核酸在三维空间中的自下而上自组装

The Challenge of Structural Control on the Nanoscale: Bottom-Up Self-Assembly of Nucleic Acids in 3D.

作者信息

Seeman Nadrian C

机构信息

Department of Chemistry, New York University, New York, NY 10003, USA.

出版信息

Int J Nanotechnol. 2005 Oct 1;2(4):348-370. doi: 10.1504/IJNT.2005.008074.

Abstract

Control of the structure of matter has been a major challenge to humankind for its entire history. The finer the features that that we are able to engineer, the greater the level of control that we have. Here, we summarize progress made in the bottom-up control of structure that is based on the self-assembly of nucleic acids. Nucleic acids are unique among molecular systems in that their intermolecular interactions can be programmed, from the perspectives of both affinity and of structure. Structural DNA nanotechnology has been based on directing the cohesion of branched DNA motifs by the same cohesive interactions used by genetic engineers. As a result, multiply-connected objects, periodic and aperiodic arrays and nanomechanical devices have been produced by these systems. Current experiments are directed at using nucleic acid systems to scaffold the spatial assembly of other species.

摘要

在人类的整个历史中,对物质结构的控制一直是一项重大挑战。我们能够设计出的特征越精细,我们所拥有的控制水平就越高。在此,我们总结了基于核酸自组装的自下而上的结构控制方面所取得的进展。核酸在分子系统中是独特的,因为从亲和力和结构的角度来看,它们的分子间相互作用都可以被编程。结构DNA纳米技术一直基于利用基因工程师所使用的相同粘性相互作用来引导分支DNA基序的凝聚。因此,这些系统已经产生了多重连接的物体、周期性和非周期性阵列以及纳米机械设备。当前的实验旨在利用核酸系统为其他物种的空间组装搭建支架。

相似文献

1
The Challenge of Structural Control on the Nanoscale: Bottom-Up Self-Assembly of Nucleic Acids in 3D.
Int J Nanotechnol. 2005 Oct 1;2(4):348-370. doi: 10.1504/IJNT.2005.008074.
2
Nucleic Acid Nanostructures: Bottom-Up Control of Geometry on the Nanoscale.
Rep Prog Phys. 2005 Jan;68(1):237-270. doi: 10.1088/0034-4885/68/1/R05.
3
DNA enables nanoscale control of the structure of matter.
Q Rev Biophys. 2005 Nov;38(4):363-71. doi: 10.1017/S0033583505004087. Epub 2006 Mar 6.
4
Experiments in Structural DNA Nanotechnology: Arrays and Devices.
Proc SPIE Int Soc Opt Eng. 2005 Jan 28;5592. doi: 10.1117/12.578118.
5
An overview of structural DNA nanotechnology.
Mol Biotechnol. 2007 Nov;37(3):246-57. doi: 10.1007/s12033-007-0059-4. Epub 2007 Jul 12.
6
Structural DNA nanotechnology: an overview.
Methods Mol Biol. 2005;303:143-66. doi: 10.1385/1-59259-901-X:143.
7
Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship.
Biochemistry. 2003 Jun 24;42(24):7259-69. doi: 10.1021/bi030079v.
8
At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology.
Chem Biol. 2003 Dec;10(12):1151-9. doi: 10.1016/j.chembiol.2003.12.002.
9
Key experimental approaches in DNA nanotechnology.
Curr Protoc Nucleic Acid Chem. 2002 Aug;Chapter 12:Unit 12.1. doi: 10.1002/0471142700.nc1201s09.
10
RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
J Nanosci Nanotechnol. 2005 Dec;5(12):1964-82. doi: 10.1166/jnn.2005.446.

引用本文的文献

1
Progressive cancer targeting by programmable aptamer-tethered nanostructures.
MedComm (2020). 2024 Oct 20;5(11):e775. doi: 10.1002/mco2.775. eCollection 2024 Nov.
2
DNA-melamine hybrid molecules: from self-assembly to nanostructures.
Beilstein J Nanotechnol. 2015 Jun 30;6:1432-8. doi: 10.3762/bjnano.6.148. eCollection 2015.

本文引用的文献

1
[5] Response surface methods for optimizing and improving reproducibility of crystal growth.
Methods Enzymol. 1997;276:74-99. doi: 10.1016/S0076-6879(97)76051-8.
2
A mechanism for gene conversion in fungi.
Genet Res. 2007 Dec;89(5-6):285-307. doi: 10.1017/S0016672308009476.
3
Six-helix bundles designed from DNA.
Nano Lett. 2005 Apr;5(4):661-5. doi: 10.1021/nl050084f.
4
From genes to machines: DNA nanomechanical devices.
Trends Biochem Sci. 2005 Mar;30(3):119-25. doi: 10.1016/j.tibs.2005.01.007.
5
Translation of DNA signals into polymer assembly instructions.
Science. 2004 Dec 17;306(5704):2072-4. doi: 10.1126/science.1104299.
6
Algorithmic self-assembly of DNA Sierpinski triangles.
PLoS Biol. 2004 Dec;2(12):e424. doi: 10.1371/journal.pbio.0020424. Epub 2004 Dec 7.
7
DNA triangles and self-assembled hexagonal tilings.
J Am Chem Soc. 2004 Nov 3;126(43):13924-5. doi: 10.1021/ja0458120.
8
A protein-driven DNA device that measures the excess binding energy of proteins that distort DNA.
Angew Chem Int Ed Engl. 2004 Sep 13;43(36):4750-2. doi: 10.1002/anie.200460302.
9
Crystal structure of a continuous three-dimensional DNA lattice.
Chem Biol. 2004 Aug;11(8):1119-26. doi: 10.1016/j.chembiol.2004.05.021.
10
Pseudohexagonal 2D DNA crystals from double crossover cohesion.
J Am Chem Soc. 2004 Aug 25;126(33):10230-1. doi: 10.1021/ja047486u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验