Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Nano. 2013 Aug 27;7(8):6563-74. doi: 10.1021/nn4014164. Epub 2013 Jul 9.
By genetically encoding affinity for inorganic materials into the capsid proteins of the M13 bacteriophage, the virus can act as a template for the synthesis of nanomaterial composites for use in various device applications. Herein, the M13 bacteriophage is employed to build a multifunctional and three-dimensional scaffold capable of improving both electron collection and light harvesting in dye-sensitized solar cells (DSSCs). This has been accomplished by binding gold nanoparticles (AuNPs) to the virus proteins and encapsulating the AuNP-virus complexes in TiO2 to produce a plasmon-enhanced and nanowire (NW)-based photoanode. The NW morphology exhibits an improved electron diffusion length compared to traditional nanoparticle-based DSSCs, and the AuNPs increase the light absorption of the dye-molecules through the phenomenon of localized surface plasmon resonance. Consequently, we report a virus-templated and plasmon-enhanced DSSC with an efficiency of 8.46%, which is achieved through optimizing both the NW morphology and the concentration of AuNPs loaded into the solar cells. In addition, we propose a theoretical model that predicts the experimentally observed trends of plasmon enhancement.
通过将对无机材料的亲和力基因编码到 M13 噬菌体的衣壳蛋白中,该病毒可以作为合成纳米材料复合材料的模板,用于各种器件应用。在此,M13 噬菌体被用于构建一种多功能的三维支架,以提高染料敏化太阳能电池(DSSC)中的电子收集和光捕获效率。这是通过将金纳米粒子(AuNPs)结合到病毒蛋白上,并将 AuNP-病毒复合物封装在 TiO2 中来实现的,从而产生等离子体增强和基于纳米线(NW)的光阳极。与传统的基于纳米颗粒的 DSSC 相比,NW 形态具有改善的电子扩散长度,并且 AuNPs 通过局域表面等离子体共振现象增加了染料分子的光吸收。因此,我们报道了一种基于病毒模板和等离子体增强的 DSSC,其效率为 8.46%,这是通过优化 NW 形态和负载到太阳能电池中的 AuNP 浓度来实现的。此外,我们提出了一个理论模型,预测了实验观察到的等离子体增强趋势。