Department of Bioengineering, University of California, Berkeley, California 94720, USA.
Nature. 2011 Oct 19;478(7369):364-8. doi: 10.1038/nature10513.
In nature, helical macromolecules such as collagen, chitin and cellulose are critical to the morphogenesis and functionality of various hierarchically structured materials. During tissue formation, these chiral macromolecules are secreted and undergo self-templating assembly, a process whereby multiple kinetic factors influence the assembly of the incoming building blocks to produce non-equilibrium structures. A single macromolecule can form diverse functional structures when self-templated under different conditions. Collagen type I, for instance, forms transparent corneal tissues from orthogonally aligned nematic fibres, distinctively coloured skin tissues from cholesteric phase fibre bundles, and mineralized tissues from hierarchically organized fibres. Nature's self-templated materials surpass the functional and structural complexity achievable by current top-down and bottom-up fabrication methods. However, self-templating has not been thoroughly explored for engineering synthetic materials. Here we demonstrate the biomimetic, self-templating assembly of chiral colloidal particles (M13 phage) into functional materials. A single-step process produces long-range-ordered, supramolecular films showing multiple levels of hierarchical organization and helical twist. Three distinct supramolecular structures are created by this approach: nematic orthogonal twists, cholesteric helical ribbons and smectic helicolidal nanofilaments. Both chiral liquid crystalline phase transitions and competing interfacial forces at the interface are found to be critical factors in determining the morphology of the templated structures during assembly. The resulting materials show distinctive optical and photonic properties, functioning as chiral reflector/filters and structural colour matrices. In addition, M13 phages with genetically incorporated bioactive peptide ligands direct both soft and hard tissue growth in a hierarchically organized manner. Our assembly approach provides insight into the complexities of hierarchical assembly in nature and could be expanded to other chiral molecules to engineer sophisticated functional helical-twisted structures.
在自然界中,螺旋状的大分子,如胶原蛋白、壳聚糖和纤维素,对于各种层次结构材料的形态发生和功能至关重要。在组织形成过程中,这些手性大分子被分泌出来并经历自模板组装,在这个过程中,多个动力学因素影响传入构建块的组装,以产生非平衡结构。当在不同条件下自模板化时,单个大分子可以形成多种功能结构。例如,胶原蛋白 I 可以从正交排列的向列纤维形成透明的角膜组织,从胆甾相纤维束形成具有独特颜色的皮肤组织,从分层组织的纤维形成矿化组织。自然界的自模板材料超越了当前自上而下和自下而上制造方法可实现的功能和结构复杂性。然而,自模板化在工程合成材料方面尚未得到充分探索。在这里,我们展示了手性胶体颗粒(M13 噬菌体)仿生自模板组装成功能材料。一步法可制备长程有序的超分子薄膜,显示出多层次的组织和螺旋扭曲。通过这种方法可以创建三种不同的超分子结构:向列正交扭曲、胆甾相螺旋带和层状螺旋纳米纤维。发现手性液晶相转变和界面处的竞争界面力都是决定组装过程中模板结构形态的关键因素。所得材料表现出独特的光学和光子学特性,可用作手性反射器/滤波器和结构色矩阵。此外,带有遗传整合的生物活性肽配体的 M13 噬菌体以层次化的方式引导软、硬组织的生长。我们的组装方法提供了对自然界中层次组装复杂性的深入了解,并可以扩展到其他手性分子,以工程复杂的功能螺旋扭曲结构。