Suppr超能文献

真核生物特异性插入元件控制人类 ARGONAUTE 核酸内切酶活性。

Eukaryote-specific insertion elements control human ARGONAUTE slicer activity.

机构信息

Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Cell Rep. 2013 Jun 27;3(6):1893-900. doi: 10.1016/j.celrep.2013.06.010.

Abstract

We have solved the crystal structure of human ARGONAUTE1 (hAGO1) bound to endogenous 5'-phosphorylated guide RNAs. To identify changes that evolutionarily rendered hAGO1 inactive, we compared our structure with guide-RNA-containing and cleavage-active hAGO2. Aside from mutation of a catalytic tetrad residue, proline residues at positions 670 and 675 in hAGO1 introduce a kink in the cS7 loop, forming a convex surface within the hAGO1 nucleic-acid-binding channel near the inactive catalytic site. We predicted that even upon restoration of the catalytic tetrad, hAGO1-cS7 sterically hinders the placement of a fully paired guide-target RNA duplex into the endonuclease active site. Consistent with this hypothesis, reconstitution of the catalytic tetrad with R805H led to low-level hAGO1 cleavage activity, whereas combining R805H with cS7 substitutions P670S and P675Q substantially augmented hAGO1 activity. Evolutionary amino acid changes to hAGO1 were readily reversible, suggesting that loading of guide RNA and pairing of seed-based miRNA and target RNA constrain its sequence drift.

摘要

我们已经解析了与人源 ARGONAUTE1(hAGO1)结合的内源性 5'-磷酸化指导 RNA 的晶体结构。为了鉴定使 hAGO1 失活的进化过程中的变化,我们将我们的结构与含有指导 RNA 且具有切割活性的 hAGO2 进行了比较。除了催化四联体残基的突变外,hAGO1 中的脯氨酸残基 670 和 675 会使 cS7 环发生扭曲,在靠近无活性催化位点的 hAGO1 核酸结合通道内形成凸面。我们预测,即使恢复了催化四联体,hAGO1-cS7 也会阻碍完全配对的指导靶 RNA 双链进入内切酶活性位点。与该假设一致,用 R805H 重建催化四联体导致 hAGO1 的低水平切割活性,而将 R805H 与 cS7 取代 P670S 和 P675Q 相结合则大大提高了 hAGO1 的活性。hAGO1 的进化氨基酸变化很容易是可逆的,这表明指导 RNA 的加载和基于种子的 miRNA 和靶 RNA 的配对限制了其序列漂移。

相似文献

1
Eukaryote-specific insertion elements control human ARGONAUTE slicer activity.
Cell Rep. 2013 Jun 27;3(6):1893-900. doi: 10.1016/j.celrep.2013.06.010.
2
The making of a slicer: activation of human Argonaute-1.
Cell Rep. 2013 Jun 27;3(6):1901-9. doi: 10.1016/j.celrep.2013.05.033. Epub 2013 Jun 6.
3
Turning catalytically inactive human Argonaute proteins into active slicer enzymes.
Nat Struct Mol Biol. 2013 Jul;20(7):814-7. doi: 10.1038/nsmb.2577. Epub 2013 May 12.
4
Multivalent Recruitment of Human Argonaute by GW182.
Mol Cell. 2017 Aug 17;67(4):646-658.e3. doi: 10.1016/j.molcel.2017.07.007. Epub 2017 Aug 3.
5
Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage.
RNA. 2014 Oct;20(10):1532-8. doi: 10.1261/rna.045203.114. Epub 2014 Aug 11.
7
Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target.
RNA. 2019 May;25(5):620-629. doi: 10.1261/rna.069328.118. Epub 2019 Feb 15.
8
Sequence- and structure-based analysis of proteins involved in miRNA biogenesis.
J Biomol Struct Dyn. 2018 Jan;36(1):139-151. doi: 10.1080/07391102.2016.1269687. Epub 2017 Jan 4.
9
Structure of yeast Argonaute with guide RNA.
Nature. 2012 Jun 20;486(7403):368-74. doi: 10.1038/nature11211.
10
Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing.
Nucleic Acids Symp Ser (Oxf). 2008(52):59-60. doi: 10.1093/nass/nrn030.

引用本文的文献

1
The structural basis for RNA slicing by human Argonaute2.
Cell Rep. 2025 Jan 28;44(1):115166. doi: 10.1016/j.celrep.2024.115166. Epub 2024 Dec 31.
2
Structural insights into RNA cleavage by PIWI Argonaute.
Nature. 2025 Mar;639(8053):250-259. doi: 10.1038/s41586-024-08438-1. Epub 2025 Jan 15.
3
The structural basis for RNA slicing by human Argonaute2.
bioRxiv. 2024 Aug 20:2024.08.19.608718. doi: 10.1101/2024.08.19.608718.
5
Research progress in mitochondrial gene editing technology.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023 Aug 25;52(4):460-472. doi: 10.3724/zdxbyxb-2023-0129.
6
Structural basis for RNA slicing by a plant Argonaute.
Nat Struct Mol Biol. 2023 Jun;30(6):778-784. doi: 10.1038/s41594-023-00989-7. Epub 2023 May 1.
8
A specific type of Argonaute phosphorylation regulates binding to microRNAs during C. elegans development.
Cell Rep. 2022 Dec 13;41(11):111822. doi: 10.1016/j.celrep.2022.111822.
10
siRNA Seed Region Is Divided into Two Functionally Different Domains in RNA Interference in Response to 2'-OMe Modifications.
ACS Omega. 2022 Jan 4;7(2):2398-2410. doi: 10.1021/acsomega.1c06455. eCollection 2022 Jan 18.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The making of a slicer: activation of human Argonaute-1.
Cell Rep. 2013 Jun 27;3(6):1901-9. doi: 10.1016/j.celrep.2013.05.033. Epub 2013 Jun 6.
3
Turning catalytically inactive human Argonaute proteins into active slicer enzymes.
Nat Struct Mol Biol. 2013 Jul;20(7):814-7. doi: 10.1038/nsmb.2577. Epub 2013 May 12.
4
Regulation of Argonaute slicer activity by guide RNA 3' end interactions with the N-terminal lobe.
J Biol Chem. 2013 Mar 15;288(11):7829-7840. doi: 10.1074/jbc.M112.441030. Epub 2013 Jan 17.
5
Structure of yeast Argonaute with guide RNA.
Nature. 2012 Jun 20;486(7403):368-74. doi: 10.1038/nature11211.
6
The structure of human argonaute-2 in complex with miR-20a.
Cell. 2012 Jul 6;150(1):100-10. doi: 10.1016/j.cell.2012.05.017. Epub 2012 Jun 7.
7
The crystal structure of human Argonaute2.
Science. 2012 May 25;336(6084):1037-40. doi: 10.1126/science.1221551. Epub 2012 Apr 26.
8
Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
9
The N domain of Argonaute drives duplex unwinding during RISC assembly.
Nat Struct Mol Biol. 2012 Jan 10;19(2):145-51. doi: 10.1038/nsmb.2232.
10
RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries.
RNA. 2011 Sep;17(9):1697-712. doi: 10.1261/rna.2799511. Epub 2011 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验