Suppr超能文献

一种海洋微微型真核生物中的染色质是核小体的无序集合。

Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes.

作者信息

Gan Lu, Ladinsky Mark S, Jensen Grant J

机构信息

Division of Biology, California Institute of Technology, Pasadena, CA, 91125, USA,

出版信息

Chromosoma. 2013 Oct;122(5):377-86. doi: 10.1007/s00412-013-0423-z. Epub 2013 Jul 3.

Abstract

Chromatin organization is central to many conserved biological processes, but it is generally unknown how the underlying nucleosomes are arranged in situ. Here, we have used electron cryotomography to study chromatin in the picoplankton Ostreococcus tauri, the smallest known free-living eukaryote. By visualizing the nucleosome densities directly, we find that O. tauri chromosomes do not arrange into discrete, compact bodies or any other higher level of order. In contrast to the textbook 30-nm fiber model, O. tauri chromatin resembles a disordered assemblage of nucleosomes akin to the polymer melt model. This disorganized nucleosome arrangement has important implications for potentially conserved functions in tiny eukaryotes such as the clustering of nonhomologous chromosomes at the kinetochore during mitosis and the independent regulation of closely positioned adjacent genes.

摘要

染色质组织对于许多保守的生物学过程至关重要,但通常不清楚潜在的核小体在原位是如何排列的。在这里,我们使用电子冷冻断层扫描技术来研究微微型浮游生物莱茵衣藻(已知最小的自由生活真核生物)中的染色质。通过直接观察核小体密度,我们发现莱茵衣藻染色体不会排列成离散的致密体或任何其他更高层次的有序结构。与教科书上的30纳米纤维模型相反,莱茵衣藻染色质类似于核小体的无序集合,类似于聚合物熔体模型。这种无序的核小体排列对于微小真核生物中潜在的保守功能具有重要意义,例如在有丝分裂期间非同源染色体在动粒处的聚集以及紧密相邻基因的独立调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3e/3777167/19aa55ab808a/412_2013_423_Fig1_HTML.jpg

相似文献

1
Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes.
Chromosoma. 2013 Oct;122(5):377-86. doi: 10.1007/s00412-013-0423-z. Epub 2013 Jul 3.
2
3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell.
PLoS One. 2007 Aug 15;2(8):e749. doi: 10.1371/journal.pone.0000749.
3
Cryo-ET reveals the macromolecular reorganization of mitotic chromosomes in vivo.
Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):10977-10982. doi: 10.1073/pnas.1720476115. Epub 2018 Oct 8.
4
Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo.
Mol Biol Cell. 2016 Nov 1;27(21):3357-3368. doi: 10.1091/mbc.E16-07-0506. Epub 2016 Sep 7.
5
The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7705-10. doi: 10.1073/pnas.0611046104. Epub 2007 Apr 25.
6
Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
Micron. 2011 Dec;42(8):733-50. doi: 10.1016/j.micron.2011.05.002. Epub 2011 May 12.
7
Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro.
J Struct Biol. 2012 May;178(2):207-14. doi: 10.1016/j.jsb.2011.11.020. Epub 2011 Nov 22.
8
Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19732-7. doi: 10.1073/pnas.0810057105. Epub 2008 Dec 8.
9
Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52. doi: 10.1073/pnas.0604795103. Epub 2006 Jul 25.
10
Flexible and dynamic nucleosome fiber in living mammalian cells.
Nucleus. 2013 Sep-Oct;4(5):349-56. doi: 10.4161/nucl.26053. Epub 2013 Aug 12.

引用本文的文献

1
In-cell chromatin structure by Cryo-FIB and Cryo-ET.
Curr Opin Struct Biol. 2025 Jun;92:103060. doi: 10.1016/j.sbi.2025.103060. Epub 2025 May 10.
2
Nanoscale analysis of human G1 and metaphase chromatin in situ.
EMBO J. 2025 May;44(9):2658-2694. doi: 10.1038/s44318-025-00407-2. Epub 2025 Mar 17.
3
Structure of native chromatin fibres revealed by Cryo-ET in situ.
Nat Commun. 2023 Oct 10;14(1):6324. doi: 10.1038/s41467-023-42072-1.
4
Heterogeneous non-canonical nucleosomes predominate in yeast cells .
Elife. 2023 Jul 28;12:RP87672. doi: 10.7554/eLife.87672.
5
Are extraordinary nucleosome structures more ordinary than we thought?
Chromosoma. 2023 Sep;132(3):139-152. doi: 10.1007/s00412-023-00791-w. Epub 2023 Mar 14.
7
The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
J Mol Biol. 2021 May 14;433(10):166902. doi: 10.1016/j.jmb.2021.166902. Epub 2021 Mar 2.
8
Cryo-nanoscale chromosome imaging-future prospects.
Biophys Rev. 2020 Oct;12(5):1257-1263. doi: 10.1007/s12551-020-00757-7. Epub 2020 Oct 2.
9
Near-atomic resolution structures of interdigitated nucleosome fibres.
Nat Commun. 2020 Sep 21;11(1):4747. doi: 10.1038/s41467-020-18533-2.
10
Mitotic chromosome organization: General rules meet species-specific variability.
Comput Struct Biotechnol J. 2020 Feb 3;18:1311-1319. doi: 10.1016/j.csbj.2020.01.006. eCollection 2020.

本文引用的文献

1
Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells.
Cell Rep. 2012 Dec 27;2(6):1645-56. doi: 10.1016/j.celrep.2012.11.008. Epub 2012 Dec 13.
2
Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres.
EMBO Rep. 2012 Nov 6;13(11):992-6. doi: 10.1038/embor.2012.139.
3
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
4
Chromosomes without a 30-nm chromatin fiber.
Nucleus. 2012 Sep-Oct;3(5):404-10. doi: 10.4161/nucl.21222. Epub 2012 Jul 31.
5
A map of nucleosome positions in yeast at base-pair resolution.
Nature. 2012 Jun 28;486(7404):496-501. doi: 10.1038/nature11142.
6
Chromatin organization - the 30 nm fiber.
Exp Cell Res. 2012 Jul 15;318(12):1448-55. doi: 10.1016/j.yexcr.2012.02.014. Epub 2012 Feb 24.
7
Type VI secretion requires a dynamic contractile phage tail-like structure.
Nature. 2012 Feb 26;483(7388):182-6. doi: 10.1038/nature10846.
9
Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton.
PLoS Biol. 2011 Dec;9(12):e1001213. doi: 10.1371/journal.pbio.1001213. Epub 2011 Dec 6.
10
Electron tomography of cells.
Q Rev Biophys. 2012 Feb;45(1):27-56. doi: 10.1017/S0033583511000102. Epub 2011 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验