Biological Macromolecules Laboratory; Structural Biology Center; National Institute of Genetics; Mishima, Japan; Institute for Advanced Biosciences; Keio University; Fujisawa, Japan; Laboratory for Biochemical Simulation; RIKEN Quantitative Biology Center; Suita, Japan; Cellular Informatics Laboratory; RIKEN; Wako, Japan; Cellular Dynamics Program; Marine Biological Laboratory; Woods Hole, MA USA; Department of Genetics; School of Life Science; Graduate University for Advanced Studies (Sokendai); Mishima, Japan; The Institute of Scientific and Industrial Research; Osaka University; Ibaraki, Japan.
Nucleus. 2013 Sep-Oct;4(5):349-56. doi: 10.4161/nucl.26053. Epub 2013 Aug 12.
Genomic DNA is organized three dimensionally within cells as chromatin and is searched and read by various proteins by an unknown mechanism; this mediates diverse cell functions. Recently, several pieces of evidence, including our cryomicroscopy and synchrotron X-ray scattering analyses, have demonstrated that chromatin consists of irregularly folded nucleosome fibers without a 30-nm chromatin fiber (i.e., a polymer melt-like structure). This melt-like structure implies a less physically constrained and locally more dynamic state, which may be crucial for protein factors to scan genomic DNA. Using a combined approach of fluorescence correlation spectroscopy, Monte Carlo computer simulations, and single nucleosome imaging, we demonstrated the flexible and dynamic nature of the nucleosome fiber in living mammalian cells. We observed local nucleosome fluctuation (~50 nm movement/30 ms) caused by Brownian motion. Our in vivo/in silico results suggest that local nucleosome dynamics facilitate chromatin accessibility and play a critical role in the scanning of genome information.
基因组 DNA 在细胞内作为染色质进行三维组织,并通过未知机制被各种蛋白质搜索和读取;这介导了多种细胞功能。最近,包括我们的冷冻电子显微镜和同步加速器 X 射线散射分析在内的几项证据表明,染色质由不规则折叠的核小体纤维组成,而没有 30nm 染色质纤维(即聚合物熔融样结构)。这种熔融样结构意味着一种物理约束较小且局部更具动态性的状态,这对于蛋白质因子扫描基因组 DNA 可能至关重要。我们使用荧光相关光谱学、蒙特卡罗计算机模拟和单个核小体成像的组合方法,证明了活哺乳动物细胞中核小体纤维的柔韧性和动态性质。我们观察到由布朗运动引起的局部核小体波动(~50nm 运动/30ms)。我们的体内/计算机模拟结果表明,局部核小体动力学促进了染色质的可及性,并在基因组信息的扫描中发挥了关键作用。