Suppr超能文献

相似文献

1
Cryo-nanoscale chromosome imaging-future prospects.
Biophys Rev. 2020 Oct;12(5):1257-1263. doi: 10.1007/s12551-020-00757-7. Epub 2020 Oct 2.
2
Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
Micron. 2011 Dec;42(8):733-50. doi: 10.1016/j.micron.2011.05.002. Epub 2011 May 12.
3
Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19732-7. doi: 10.1073/pnas.0810057105. Epub 2008 Dec 8.
4
HPM live μ for a full CLEM workflow.
Methods Cell Biol. 2021;162:115-149. doi: 10.1016/bs.mcb.2020.10.022. Epub 2021 Feb 18.
5
New insight into the mitotic chromosome structure: irregular folding of nucleosome fibers without 30-nm chromatin structure.
Cold Spring Harb Symp Quant Biol. 2010;75:439-44. doi: 10.1101/sqb.2010.75.034. Epub 2011 Mar 29.
6
Structure of mitotic chromosomes.
Mol Cell. 2021 Nov 4;81(21):4369-4376.e3. doi: 10.1016/j.molcel.2021.08.020. Epub 2021 Sep 13.
7
Contribution of advanced fluorescence nano microscopy towards revealing mitotic chromosome structure.
Chromosome Res. 2021 Mar;29(1):19-36. doi: 10.1007/s10577-021-09654-5. Epub 2021 Mar 9.
8
Cryo-ET reveals the macromolecular reorganization of mitotic chromosomes in vivo.
Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):10977-10982. doi: 10.1073/pnas.1720476115. Epub 2018 Oct 8.
9
Packaging the genome: the structure of mitotic chromosomes.
J Biochem. 2008 Feb;143(2):145-53. doi: 10.1093/jb/mvm214. Epub 2007 Nov 2.

引用本文的文献

1
Biophysical Reviews: 2020-looking back, going forward.
Biophys Rev. 2020 Dec 2;12(6):1269-1276. doi: 10.1007/s12551-020-00777-3. eCollection 2020 Dec.
2
Biophysical Reviews: a Q1 ranked journal in biophysics and structural biology.
Biophys Rev. 2020 Oct;12(5):1085-1089. doi: 10.1007/s12551-020-00764-8. Epub 2020 Sep 29.

本文引用的文献

1
Super-resolution Microscopy at Cryogenic Temperatures Using Solid Immersion Lenses.
Bio Protoc. 2019 Nov 20;9(22):e3426. doi: 10.21769/BioProtoc.3426.
2
Mitotic chromosome organization: General rules meet species-specific variability.
Comput Struct Biotechnol J. 2020 Feb 3;18:1311-1319. doi: 10.1016/j.csbj.2020.01.006. eCollection 2020.
3
Mesoscale organization of the chromatin fiber.
Curr Opin Genet Dev. 2020 Apr;61:32-36. doi: 10.1016/j.gde.2020.02.022. Epub 2020 Apr 16.
4
Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment.
Front Mol Biosci. 2020 Feb 25;7:15. doi: 10.3389/fmolb.2020.00015. eCollection 2020.
5
In situ Microfluidic Cryofixation for Cryo Focused Ion Beam Milling and Cryo Electron Tomography.
Sci Rep. 2019 Dec 13;9(1):19133. doi: 10.1038/s41598-019-55413-2.
6
3D observation of chromosome scaffold structure using a 360° electron tomography sample holder.
Micron. 2019 Nov;126:102736. doi: 10.1016/j.micron.2019.102736. Epub 2019 Sep 8.
7
Cancer Cell Lines Are Useful Model Systems for Medical Research.
Cancers (Basel). 2019 Aug 1;11(8):1098. doi: 10.3390/cancers11081098.
9
Mitotic Chromosome Mechanics: How Cells Segregate Their Genome.
Trends Cell Biol. 2019 Sep;29(9):717-726. doi: 10.1016/j.tcb.2019.05.007. Epub 2019 Jun 20.
10
The transition structure of chromatin fibers at the nanoscale probed by cryogenic electron tomography.
Nanoscale. 2019 Aug 7;11(29):13783-13789. doi: 10.1039/c9nr02042j. Epub 2019 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验