Suppr超能文献

DNA酶I超敏位点的全基因组图谱绘制。

Genome-scale mapping of DNase I hypersensitivity.

作者信息

John Sam, Sabo Peter J, Canfield Theresa K, Lee Kristen, Vong Shinny, Weaver Molly, Wang Hao, Vierstra Jeff, Reynolds Alex P, Thurman Robert E, Stamatoyannopoulos John A

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington, USA.

出版信息

Curr Protoc Mol Biol. 2013 Jul;Chapter 27:Unit 21.27. doi: 10.1002/0471142727.mb2127s103.

Abstract

DNase I-seq is a global and high-resolution method that uses the nonspecific endonuclease DNase I to map chromatin accessibility. These accessible regions, designated as DNase I hypersensitive sites (DHSs), define the regulatory features, (e.g., promoters, enhancers, insulators, and locus control regions) of complex genomes. In this unit, methods are described for nuclei isolation, digestion of nuclei with limiting concentrations of DNase I, and the biochemical fractionation of DNase I hypersensitive sites in preparation for high-throughput sequencing. DNase I-seq is an unbiased and robust method that is not predicated on an a priori understanding of regulatory patterns or chromatin features.

摘要

DNase I测序是一种全面且高分辨率的方法,它利用非特异性核酸内切酶DNase I来绘制染色质可及性图谱。这些可及区域,即DNase I超敏位点(DHSs),定义了复杂基因组的调控特征(例如启动子、增强子、绝缘子和基因座控制区)。在本单元中,将介绍用于细胞核分离、用有限浓度的DNase I消化细胞核以及对DNase I超敏位点进行生化分级分离以准备高通量测序的方法。DNase I测序是一种无偏差且稳健的方法,它并不依赖于对调控模式或染色质特征的先验理解。

相似文献

1
Genome-scale mapping of DNase I hypersensitivity.
Curr Protoc Mol Biol. 2013 Jul;Chapter 27:Unit 21.27. doi: 10.1002/0471142727.mb2127s103.
2
DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing.
Methods Mol Biol. 2017;1629:141-154. doi: 10.1007/978-1-4939-7125-1_10.
3
Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.
Nat Protoc. 2017 Nov;12(11):2342-2354. doi: 10.1038/nprot.2017.099. Epub 2017 Oct 12.
4
Genome-wide mapping of DNase I hypersensitive sites in plants.
Methods Mol Biol. 2015;1284:71-89. doi: 10.1007/978-1-4939-2444-8_4.
5
Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato.
Methods Mol Biol. 2018;1830:367-379. doi: 10.1007/978-1-4939-8657-6_22.
6
Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks.
Methods Mol Biol. 2021;2328:25-46. doi: 10.1007/978-1-0716-1534-8_3.
8
Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals.
Gene. 2018 Aug 15;667:83-94. doi: 10.1016/j.gene.2018.05.033. Epub 2018 May 14.
9
Genome-wide discovery of active regulatory elements and transcription factor footprints in using DNase-seq.
Genome Res. 2017 Dec;27(12):2108-2119. doi: 10.1101/gr.223735.117. Epub 2017 Oct 26.
10

引用本文的文献

1
Machine learning tools for deciphering the regulatory logic of enhancers in health and disease.
Front Genet. 2025 Aug 13;16:1603687. doi: 10.3389/fgene.2025.1603687. eCollection 2025.
4
An Expanded Registry of Candidate cis-Regulatory Elements for Studying Transcriptional Regulation.
bioRxiv. 2024 Dec 26:2024.12.26.629296. doi: 10.1101/2024.12.26.629296.
5
XL-DNase-Seq: Footprinting Analysis of Dynamic Transcription Factors.
Methods Mol Biol. 2024;2846:243-261. doi: 10.1007/978-1-0716-4071-5_15.
6
Genomic context sensitizes regulatory elements to genetic disruption.
Mol Cell. 2024 May 16;84(10):1842-1854.e7. doi: 10.1016/j.molcel.2024.04.013.
7
Genomic context sensitizes regulatory elements to genetic disruption.
bioRxiv. 2024 Mar 12:2023.07.02.547201. doi: 10.1101/2023.07.02.547201.
8
The ENCODE Uniform Analysis Pipelines.
Res Sq. 2023 Jul 19:rs.3.rs-3111932. doi: 10.21203/rs.3.rs-3111932/v1.
9
Optimization of ATAC-seq in wheat seedling roots using INTACT-isolated nuclei.
BMC Plant Biol. 2023 May 22;23(1):270. doi: 10.1186/s12870-023-04281-0.

本文引用的文献

1
Systematic localization of common disease-associated variation in regulatory DNA.
Science. 2012 Sep 7;337(6099):1190-5. doi: 10.1126/science.1222794. Epub 2012 Sep 5.
2
An expansive human regulatory lexicon encoded in transcription factor footprints.
Nature. 2012 Sep 6;489(7414):83-90. doi: 10.1038/nature11212.
3
The accessible chromatin landscape of the human genome.
Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/nature11232.
4
BEDOPS: high-performance genomic feature operations.
Bioinformatics. 2012 Jul 15;28(14):1919-20. doi: 10.1093/bioinformatics/bts277. Epub 2012 May 9.
5
Using CisGenome to analyze ChIP-chip and ChIP-seq data.
Curr Protoc Bioinformatics. 2011 Mar;Chapter 2:Unit2.13. doi: 10.1002/0471250953.bi0213s33.
6
Chromatin accessibility pre-determines glucocorticoid receptor binding patterns.
Nat Genet. 2011 Mar;43(3):264-8. doi: 10.1038/ng.759. Epub 2011 Jan 23.
8
Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data.
Nat Methods. 2008 Sep;5(9):829-34. doi: 10.1038/nmeth.1246.
9
PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls.
Nat Biotechnol. 2009 Jan;27(1):66-75. doi: 10.1038/nbt.1518. Epub 2009 Jan 4.
10
Model-based analysis of ChIP-Seq (MACS).
Genome Biol. 2008;9(9):R137. doi: 10.1186/gb-2008-9-9-r137. Epub 2008 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验