Dept. of Electrical Engineering, Columbia University, New York, NY 10027, United States.
Sci Rep. 2013;3:2145. doi: 10.1038/srep02145.
Polymers have appealing optical, biochemical, and mechanical qualities, including broadband transparency, ease of functionalization, and biocompatibility. However, their low refractive indices have precluded wavelength-scale optical confinement and nanophotonic applications in polymers. Here, we introduce a suspended polymer photonic crystal (SPPC) architecture that enables the implementation of nanophotonic structures typically limited to high-index materials. Using the SPPC platform, we demonstrate nanophotonic band-edge filters, waveguides, and nanocavities featuring quality (Q) factors exceeding 2, 300 and mode volumes (V(mode)) below 1.7(λ/n)(3). The unprecedentedly high Q/V(mode) ratio results in a spectrally selective enhancement of radiative transitions of embedded emitters via the cavity Purcell effect with an enhancement factor exceeding 100. Moreover, the SPPC architecture allows straightforward integration of nanophotonic networks, shown here by a waveguide-coupled cavity drop filter with sub-nanometer spectral resolution. The nanoscale optical confinement in polymer promises new applications ranging from optical communications to organic opto-electronics, and nanophotonic polymer sensors.
聚合物具有吸引人的光学、生化和机械特性,包括宽带透明性、易于功能化和生物相容性。然而,它们的低折射率限制了在聚合物中实现波长尺度的光学限制和纳米光子应用。在这里,我们引入了一种悬浮聚合物光子晶体(SPPC)结构,该结构能够实现通常限于高折射率材料的纳米光子结构。使用 SPPC 平台,我们演示了具有超过 2 的品质因数 (Q)、超过 300 的模式体积 (V(mode)) 和低于 1.7(λ/n)(3)的纳米光子带边缘滤波器、波导和纳米腔。前所未有的高 Q/V(mode) 比通过腔的普塞尔效应导致嵌入式发射器的辐射跃迁的光谱选择性增强,其增强因子超过 100。此外,SPPC 结构允许纳米光子网络的直接集成,这里通过具有亚纳米光谱分辨率的波导耦合腔跌落滤波器展示了这一点。聚合物中的纳米尺度光学限制有望在从光通信到有机光电的各个领域以及纳米光子聚合物传感器中实现新的应用。