Department of Bio-organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
Curr Opin Struct Biol. 2013 Aug;23(4):613-21. doi: 10.1016/j.sbi.2013.06.010. Epub 2013 Jul 2.
Inspired by nature, researchers aim at bringing together different types of enzymes by the generation of multi-enzymatic structures. Amongst others, chemical methods have been exploited enabling the covalent linkage of a set of enzymes to the same macromolecular scaffold or direct cross-linking. Control over the relative position of enzymes in the system has been realized by sequential immobilization in microchannels and by positional co-localization on DNA nanostructures. So far, site-specific conjugation reactions such as the azide-alkyne cycloaddition, N-terminal transamination and enzyme-mediated cross-linking, have been applied to a limited extent only. These methods are expected to allow for co-immobilization of less robust enzymes, hence, an expansion in the diversity of immobilized biocatalytic cascades. In addition, the combination of multiple bioconjugation methods will provide control over the composition in scaffold-free multi-enzyme complexes.
受自然启发,研究人员旨在通过生成多酶结构将不同类型的酶结合在一起。其中,人们利用化学方法实现了将一组酶共价连接到同一个大分子支架上,或者直接进行交联。通过在微通道中顺序固定化和在 DNA 纳米结构上的位置共定位,可以实现对系统中酶相对位置的控制。到目前为止,只有有限的几种酶促反应(如叠氮-炔环加成、N 端转氨和酶介导的交联)被应用于这一领域。这些方法有望允许固定化不太稳定的酶,从而扩大固定化生物催化级联的多样性。此外,多种生物偶联方法的结合将为无支架多酶复合物的组成提供控制。