Department of Physics and Astronomy, Uppsala University, PO Box 803, SE-75108, Uppsala, Sweden.
J Phys Condens Matter. 2013 Aug 14;25(32):325103. doi: 10.1088/0953-8984/25/32/325103. Epub 2013 Jul 9.
Protein collapse from a random chain to the native state involves a dynamical phase transition. During the process, new scales and collective variables become excited while old ones recede and fade away. The presence of different phases and many scales causes formidable computational bottle-necks in approaches that are based on full atomic scale scrutiny. Here we propose a way to describe the folding and unfolding processes effectively, using only the biologically relevant time and distance scales. We merge a coarse grained Landau theory that models the static collapsed protein in the low-temperature limit with a Glauber protocol that describes finite-temperature relaxation dynamics in a statistical system which is out of thermal equilibrium. As an example we inspect the collapse of a HP35 chicken villin headpiece subdomain, a paradigm specimen in protein folding studies. We simulate the folding and unfolding process by repeated heating and cooling cycles between a given low-temperature, i.e. bad solvent, environment where the protein is collapsed and various different high-temperature, i.e. good solvent, environments. We find that as long as the high temperature value stays below a value in the range that separates the random walk phase from the self-avoiding walk phase, we consistently recover the native state upon cooling. But, when heated to sufficiently high temperatures, the native state practically never recurs. Our result confirms Anfinsen's thermodynamical hypothesis and estimates a temperature range for its validity, in the case of villin.
蛋白质从无规线团状态折叠到天然状态涉及一个动力学相变过程。在这个过程中,新的尺度和集体变量被激发,而旧的尺度则逐渐消失。由于存在不同的相和多个尺度,基于全原子尺度分析的方法在计算上存在很大的瓶颈。在这里,我们提出了一种仅使用与生物学相关的时间和距离尺度来有效地描述折叠和展开过程的方法。我们将模型低温下静态折叠蛋白质的粗粒朗道理论与描述非平衡统计系统有限温度弛豫动力学的格拉沃夫协议相结合。作为一个例子,我们检查了 HP35 鸡绒毛蛋白头部结构域的折叠和展开过程,这是蛋白质折叠研究中的一个范例。我们通过在给定的低温环境(即不良溶剂环境)和各种不同的高温环境(即良好溶剂环境)之间进行多次加热和冷却循环来模拟折叠和展开过程。我们发现,只要高温值保持在随机行走相和自回避行走相之间的分离值以下,在冷却时我们就可以恢复到天然状态。但是,当加热到足够高的温度时,天然状态几乎不会再出现。我们的结果证实了 Anfinsen 的热力学假设,并估计了其在绒毛蛋白情况下的有效温度范围。