Institut de Neurosciences des Systèmes, Faculté de Médecine, Aix-Marseille Université, Inserm UMR1106 Marseille, France.
Front Comput Neurosci. 2013 Jul 3;7:78. doi: 10.3389/fncom.2013.00078. eCollection 2013.
Information processing in the brain is thought to rely on the convergence and divergence of oscillatory behaviors of widely distributed brain areas. This information flow is captured in its simplest form via the concepts of synchronization and desynchronization and related metrics. More complex forms of information flow are transient synchronizations and multi-frequency behaviors with metrics related to cross-frequency coupling (CFC). It is supposed that CFC plays a crucial role in the organization of large-scale networks and functional integration across large distances. In this study, we describe different CFC measures and test their applicability in simulated and real electroencephalographic (EEG) data obtained during resting state. For these purposes, we derive generic oscillator equations from full brain network models. We systematically model and simulate the various scenarios of CFC under the influence of noise to obtain biologically realistic oscillator dynamics. We find that (i) specific CFC-measures detect correctly in most cases the nature of CFC under noise conditions, (ii) bispectrum (BIS) and bicoherence (BIC) correctly detect the CFCs in simulated data, (iii) empirical resting state EEG show a prominent delta-alpha CFC as identified by specific CFC measures and the more classic BIS and BIC. This coupling was mostly asymmetric (directed) and generally higher in the eyes closed (EC) than in the eyes open (EO) condition. In conjunction, these two sets of measures provide a powerful toolbox to reveal the nature of couplings from experimental data and as such allow inference on the brain state dependent information processing. Methodological advantages of using CFC measures and theoretical significance of delta and alpha interactions during resting and other brain states are discussed.
大脑中的信息处理被认为依赖于广泛分布的脑区的振荡行为的收敛和发散。这种信息流以最简单的形式通过同步和去同步的概念以及相关的度量来捕获。更复杂形式的信息流是瞬态同步和多频行为,具有与跨频耦合(CFC)相关的度量。据推测,CFC 在大尺度网络的组织和远距离功能整合中起着至关重要的作用。在这项研究中,我们描述了不同的 CFC 度量,并在静息状态下获得的模拟和真实脑电图(EEG)数据中测试了它们的适用性。为此,我们从全脑网络模型中推导出通用振荡器方程。我们系统地建模和模拟 CFC 在噪声影响下的各种情况,以获得具有生物现实性的振荡器动力学。我们发现:(i)特定的 CFC 度量在大多数情况下正确检测噪声条件下的 CFC 性质,(ii)双谱(BIS)和双相干(BIC)正确检测模拟数据中的 CFC,(iii)经验性静息状态 EEG 显示出明显的 delta-alpha CFC,这是由特定的 CFC 度量以及更经典的 BIS 和 BIC 识别出来的。这种耦合大多是不对称的(定向的),在闭眼(EC)状态下比睁眼(EO)状态下通常更高。总之,这两套度量为揭示实验数据中的耦合性质提供了一个强大的工具包,并允许根据大脑状态依赖的信息处理进行推断。讨论了使用 CFC 度量的方法学优势以及在静息和其他脑状态下 delta 和 alpha 相互作用的理论意义。