Stanford Institute of Neuro-Innovation and Translational Neuroscience, and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
J Neurosci. 2013 Jul 10;33(28):11440-50. doi: 10.1523/JNEUROSCI.1710-13.2013.
In brain, properly balanced synaptic excitation and inhibition is critically important for network stability and efficient information processing. Here, we show that retinoic acid (RA), a synaptic signaling molecule whose synthesis is activated by reduced neural activity, induces rapid internalization of synaptic GABAA receptors in mouse hippocampal neurons, leading to significant reduction of inhibitory synaptic transmission. Similar to its action at excitatory synapses, action of RA at inhibitory synapses requires protein translation and is mediated by a nontranscriptional function of the RA-receptor RARα. Different from RA action at excitatory synapses, however, RA at inhibitory synapses causes a loss instead of the gain of a synaptic protein (i.e., GABAARs). Moreover, the removal of GABAARs from the synapses and the reduction of synaptic inhibition do not require the execution of RA's action at excitatory synapses (i.e., downscaling of synaptic inhibition is intact when upscaling of synaptic excitation is blocked). Thus, the action of RA at inhibitory and excitatory synapses diverges significantly after the step of RARα-mediated protein synthesis, and the regulations of GABAAR and AMPAR trafficking are independent processes. When both excitatory and inhibitory synapses are examined together in the same neuron, the synaptic excitation/inhibition ratio is significantly enhanced by RA. Importantly, RA-mediated downscaling of synaptic inhibition is completely absent in Fmr1 knock-out neurons. Thus, RA acts as a central organizer for coordinated homeostatic plasticity in both excitatory and inhibitory synapses, and impairment of this overall process alters the excitatory/inhibitory balance of a circuit and likely represents a major feature of fragile X-syndrome.
在大脑中,适当平衡的突触兴奋和抑制对于网络稳定性和有效信息处理至关重要。在这里,我们表明,视黄酸(RA)是一种突触信号分子,其合成被减少的神经活动激活,它诱导小鼠海马神经元中突触 GABAA 受体的快速内化,导致抑制性突触传递的显著减少。与它在兴奋性突触上的作用类似,RA 在抑制性突触上的作用需要蛋白质翻译,并且由 RA 受体 RARα 的非转录功能介导。然而,与 RA 在兴奋性突触上的作用不同,RA 在抑制性突触上引起的是突触蛋白(即 GABAARs)的丢失而不是获得。此外,从突触中去除 GABAARs 和减少突触抑制并不需要执行 RA 在兴奋性突触上的作用(即,当抑制性突触的放大被阻断时,抑制性突触的下调仍然完整)。因此,RA 在抑制性和兴奋性突触上的作用在 RARα 介导的蛋白质合成之后明显分歧,并且 GABAAR 和 AMPAR 转运的调节是独立的过程。当在同一个神经元中同时检查兴奋性和抑制性突触时,RA 显著增强了突触的兴奋/抑制比。重要的是,在 Fmr1 敲除神经元中,RA 介导的抑制性突触下调完全缺失。因此,RA 作为兴奋性和抑制性突触中协调的同型平衡可塑性的中枢组织者发挥作用,而这种整体过程的损害改变了电路的兴奋性/抑制性平衡,可能代表脆性 X 综合征的一个主要特征。