Vanderweele Tyler J
Departments of Biostatistics and Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, U.S.A.
Biometrika. 2012 Jun;99(2):502-508. doi: 10.1093/biomet/ass012. Epub 2012 Apr 2.
Results are given concerning inferences that can be drawn about interaction when binary exposures are subject to certain forms of independent nondifferential misclassification. Tests for interaction, using the misclassified exposures, are valid provided the probability of misclassification satisfies certain bounds. Results are given for additive statistical interactions, for causal interactions corresponding to synergism in the sufficient cause framework and for so-called compositional epistasis. Both two-way and three-way interactions are considered. The results require only that the probability of misclassification be no larger than 1/2 or 1/4, depending on the test. For additive statistical interaction, a method to correct estimates and confidence intervals for misclassification is described. The consequences for power of interaction tests under exposure misclassification are explored through simulations.
给出了关于当二元暴露受到某些形式的独立非差异错误分类时,可得出的关于相互作用的推断结果。使用错误分类的暴露进行相互作用检验是有效的,前提是错误分类的概率满足一定界限。给出了加法统计相互作用、在充分病因框架中对应协同作用的因果相互作用以及所谓的组成性上位性的结果。同时考虑了双向和三向相互作用。结果仅要求错误分类的概率不大于1/2或1/4,具体取决于检验。对于加法统计相互作用,描述了一种校正错误分类估计和置信区间的方法。通过模拟探讨了暴露错误分类下相互作用检验效能的影响。