Suppr超能文献

暴露错误分类情况下相加交互作用的推断。

Inference for additive interaction under exposure misclassification.

作者信息

Vanderweele Tyler J

机构信息

Departments of Biostatistics and Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, U.S.A.

出版信息

Biometrika. 2012 Jun;99(2):502-508. doi: 10.1093/biomet/ass012. Epub 2012 Apr 2.

Abstract

Results are given concerning inferences that can be drawn about interaction when binary exposures are subject to certain forms of independent nondifferential misclassification. Tests for interaction, using the misclassified exposures, are valid provided the probability of misclassification satisfies certain bounds. Results are given for additive statistical interactions, for causal interactions corresponding to synergism in the sufficient cause framework and for so-called compositional epistasis. Both two-way and three-way interactions are considered. The results require only that the probability of misclassification be no larger than 1/2 or 1/4, depending on the test. For additive statistical interaction, a method to correct estimates and confidence intervals for misclassification is described. The consequences for power of interaction tests under exposure misclassification are explored through simulations.

摘要

给出了关于当二元暴露受到某些形式的独立非差异错误分类时,可得出的关于相互作用的推断结果。使用错误分类的暴露进行相互作用检验是有效的,前提是错误分类的概率满足一定界限。给出了加法统计相互作用、在充分病因框架中对应协同作用的因果相互作用以及所谓的组成性上位性的结果。同时考虑了双向和三向相互作用。结果仅要求错误分类的概率不大于1/2或1/4,具体取决于检验。对于加法统计相互作用,描述了一种校正错误分类估计和置信区间的方法。通过模拟探讨了暴露错误分类下相互作用检验效能的影响。

相似文献

1
Inference for additive interaction under exposure misclassification.
Biometrika. 2012 Jun;99(2):502-508. doi: 10.1093/biomet/ass012. Epub 2012 Apr 2.
4
Inferences on the potential effects of presumed nondifferential exposure misclassification.
Ann Epidemiol. 1993 May;3(3):289-94. doi: 10.1016/1047-2797(93)90032-y.
6
Genome wide association studies in presence of misclassified binary responses.
BMC Genet. 2013 Dec 26;14:124. doi: 10.1186/1471-2156-14-124.
7
Recovering true risks when multilevel exposure and covariables are both misclassified.
Am J Epidemiol. 1999 Oct 15;150(8):886-91. doi: 10.1093/oxfordjournals.aje.a010094.
9
Binary regression with differentially misclassified response and exposure variables.
Stat Med. 2015 Apr 30;34(9):1605-20. doi: 10.1002/sim.6440. Epub 2015 Feb 4.
10
Differential misclassification and the assessment of gene-environment interactions in case-control studies.
Am J Epidemiol. 1998 Mar 1;147(5):426-33. doi: 10.1093/oxfordjournals.aje.a009467.

引用本文的文献

2
Moving from two- to multi-way interactions among binary risk factors on the additive scale.
Biostat Epidemiol. 2020 Dec 3;4(1):282-293. doi: 10.1080/24709360.2020.1850171.
3
Multiplicative Interactions Under Differential Outcome Measurement Error with Perfect Specificity.
Epidemiology. 2019 May;30(3):e15-e16. doi: 10.1097/EDE.0000000000000979.
4
Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies.
Cancer Epidemiol Biomarkers Prev. 2017 Sep;26(9):1370-1380. doi: 10.1158/1055-9965.EPI-17-0459. Epub 2017 Jul 14.
5
Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification.
Am J Epidemiol. 2016 Feb 1;183(3):237-47. doi: 10.1093/aje/kwv198. Epub 2016 Jan 10.
6
Additive interaction in the presence of a mismeasured outcome.
Am J Epidemiol. 2015 Jan 1;181(1):81-2. doi: 10.1093/aje/kwu351. Epub 2014 Dec 16.
7
Sample Size and Power Calculations for Additive Interactions.
Epidemiol Methods. 2012 Aug 1;1(1):159-188. doi: 10.1515/2161-962X.1010.

本文引用的文献

1
Semiparametric tests for sufficient cause interaction.
J R Stat Soc Series B Stat Methodol. 2012 Mar;74(2):223-244. doi: 10.1111/j.1467-9868.2011.01011.x.
2
Inference for causal interactions for continuous exposures under dichotomization.
Biometrics. 2011 Dec;67(4):1414-21. doi: 10.1111/j.1541-0420.2011.01629.x. Epub 2011 Jun 20.
3
Multiply robust inference for statistical interactions.
J Am Stat Assoc. 2008 Dec 1;103(484):1693-1704. doi: 10.1198/016214508000001084.
4
Remarks on antagonism.
Am J Epidemiol. 2011 May 15;173(10):1140-7. doi: 10.1093/aje/kwr009. Epub 2011 Apr 13.
5
Epistatic interactions.
Stat Appl Genet Mol Biol. 2010;9(1):Article 1. doi: 10.2202/1544-6115.1517. Epub 2010 Jan 6.
6
Empirical tests for compositional epistasis.
Nat Rev Genet. 2010 Feb;11(2):166. doi: 10.1038/nrg2579-c1.
8
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.
9
Sufficient cause interactions and statistical interactions.
Epidemiology. 2009 Jan;20(1):6-13. doi: 10.1097/EDE.0b013e31818f69e7.
10
Estimation of the relative excess risk due to interaction and associated confidence bounds.
Am J Epidemiol. 2009 Mar 15;169(6):756-60. doi: 10.1093/aje/kwn411. Epub 2009 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验