Suppr超能文献

实时预测意大利首轮新冠疫情的发病指标

Nowcasting COVID-19 incidence indicators during the Italian first outbreak.

机构信息

Department of Statistical Sciences, University of Rome "La Sapienza", Rome, Italy.

Department of Bio-Sciences, University of Molise, Campobasso, Italy.

出版信息

Stat Med. 2021 Jul 20;40(16):3843-3864. doi: 10.1002/sim.9004. Epub 2021 May 6.

Abstract

A novel parametric regression model is proposed to fit incidence data typically collected during epidemics. The proposal is motivated by real-time monitoring and short-term forecasting of the main epidemiological indicators within the first outbreak of COVID-19 in Italy. Accurate short-term predictions, including the potential effect of exogenous or external variables are provided. This ensures to accurately predict important characteristics of the epidemic (e.g., peak time and height), allowing for a better allocation of health resources over time. Parameter estimation is carried out in a maximum likelihood framework. All computational details required to reproduce the approach and replicate the results are provided.

摘要

提出了一种新的参数回归模型,用于拟合通常在传染病爆发期间收集的发病数据。这一建议的动机是实时监测和短期预测意大利首次 COVID-19 爆发期间的主要流行病学指标。提供了准确的短期预测,包括外生或外部变量的潜在影响。这确保了对传染病的重要特征(例如,高峰期和高峰期)进行准确预测,从而随着时间的推移更好地分配卫生资源。参数估计是在最大似然框架中进行的。提供了重现方法和复制结果所需的所有计算细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e71/8251895/85648f165c51/SIM-40-3843-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验