Suppr超能文献

豆科植物基因调控网络预测服务器:用于功能和比较研究。

LegumeGRN: a gene regulatory network prediction server for functional and comparative studies.

机构信息

Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America.

出版信息

PLoS One. 2013 Jul 3;8(7):e67434. doi: 10.1371/journal.pone.0067434. Print 2013.

Abstract

Building accurate gene regulatory networks (GRNs) from high-throughput gene expression data is a long-standing challenge. However, with the emergence of new algorithms combined with the increase of transcriptomic data availability, it is now reachable. To help biologists to investigate gene regulatory relationships, we developed a web-based computational service to build, analyze and visualize GRNs that govern various biological processes. The web server is preloaded with all available Affymetrix GeneChip-based transcriptomic and annotation data from the three model legume species, i.e., Medicago truncatula, Lotus japonicus and Glycine max. Users can also upload their own transcriptomic and transcription factor datasets from any other species/organisms to analyze their in-house experiments. Users are able to select which experiments, genes and algorithms they will consider to perform their GRN analysis. To achieve this flexibility and improve prediction performance, we have implemented multiple mainstream GRN prediction algorithms including co-expression, Graphical Gaussian Models (GGMs), Context Likelihood of Relatedness (CLR), and parallelized versions of TIGRESS and GENIE3. Besides these existing algorithms, we also proposed a parallel Bayesian network learning algorithm, which can infer causal relationships (i.e., directionality of interaction) and scale up to several thousands of genes. Moreover, this web server also provides tools to allow integrative and comparative analysis between predicted GRNs obtained from different algorithms or experiments, as well as comparisons between legume species. The web site is available at http://legumegrn.noble.org.

摘要

从高通量基因表达数据中构建准确的基因调控网络 (GRN) 是一个长期存在的挑战。然而,随着新算法的出现以及转录组数据可用性的增加,现在已经可以实现了。为了帮助生物学家研究基因调控关系,我们开发了一个基于网络的计算服务,用于构建、分析和可视化调控各种生物学过程的 GRN。该网络服务器预先加载了来自三种模式豆科植物(即紫花苜蓿、百脉根和大豆)的所有可用的 Affymetrix GeneChip 转录组和注释数据。用户还可以上传他们自己来自任何其他物种/生物体的转录组和转录因子数据集,以分析他们的内部实验。用户可以选择他们将考虑哪些实验、基因和算法来进行他们的 GRN 分析。为了实现这种灵活性和提高预测性能,我们已经实现了多个主流的 GRN 预测算法,包括共表达、图形高斯模型 (GGMs)、关联的上下文似然 (CLR),以及 TIGRESS 和 GENIE3 的并行版本。除了这些现有的算法之外,我们还提出了一种并行贝叶斯网络学习算法,该算法可以推断因果关系(即相互作用的方向),并扩展到数千个基因。此外,这个网络服务器还提供了工具,允许对不同算法或实验获得的预测 GRN 进行集成和比较分析,以及对豆科物种之间进行比较。该网站可在 http://legumegrn.noble.org 访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d208/3701055/f3e69905cf33/pone.0067434.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验