Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan.
Nanoscale. 2013 Aug 21;5(16):7629-38. doi: 10.1039/c3nr00864a. Epub 2013 Jul 12.
We simultaneously employed grazing incidence small-angle and wide-angle X-ray scattering (GISAXS and GIWAXS) techniques to quantitatively study the structural evolution and kinetic behavior of poly(3-hexylthiophene) (P3HT) crystallization, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) aggregation and amorphous P3HT/PCBM domains from a bulk heterojunction (BHJ) to a thermally unstable structure. The independent phase separation regimes on the nanoscale (∼10 nm), mesoscale (∼100 nm) and macroscale (∼μm) are revealed for the first time. Bis-PCBM molecules as inhibitors incorporated into the P3HT/PCBM blend films were adopted as a case study of a control strategy for improving the thermal stability of P3HT/PCBM solar cell. The detailed information on the formation, growth, transformation and mutual interaction between different phases during the hierarchical structural evolution of P3HT/PCBM:xbis-PCBM (x = 8-100%) blend films are presented herein. This systematic study proposes the mechanisms of thermal instability for a polymer/fullerene-based solar cell. We demonstrate a new fundamental concept that the structural evolution and thermal stability of mesoscale amorphous P3HT/PCBM domains during heating are the origin of controlling thermal instability rather than those of nanoscale thermally-stable BHJ structures. It leads to a low-cost and easy-fabrication control strategy for effectively tailoring the hierarchical morphology against thermal instability from molecular to macro scales. The optimum treatment achieving high thermal stability, control of mesoscale domains, can be effectively designed. It is independent of the original BHJ nanostructure design of a polymer/fullerene-based solar cell with high performance. It advances the general knowledge on the thermal instability directly arising from the nanoscale structure.
我们同时采用掠入射小角和广角 X 射线散射(GISAXS 和 GIWAXS)技术,定量研究了聚(3-己基噻吩)(P3HT)结晶、[6,6]-苯基-C61-丁酸甲酯(PCBM)聚集和无定形 P3HT/PCBM 畴从体异质结(BHJ)到热不稳定结构的结构演变和动力学行为。首次揭示了纳米尺度(10nm)、介观尺度(100nm)和宏观尺度(~μm)上独立的相分离区域。将双 PCBM 分子作为抑制剂掺入 P3HT/PCBM 共混膜中,作为提高 P3HT/PCBM 太阳能电池热稳定性的控制策略的案例研究。本文介绍了 P3HT/PCBM:xbis-PCBM(x=8-100%)共混膜的分级结构演变过程中不同相的形成、生长、转化和相互作用的详细信息。这项系统研究提出了聚合物/富勒烯基太阳能电池热不稳定性的机制。我们提出了一个新的基本概念,即在加热过程中,介观无定形 P3HT/PCBM 畴的结构演变和热稳定性是控制热不稳定性的根源,而不是纳米尺度热稳定 BHJ 结构的根源。它为从分子到宏观尺度有效地控制热不稳定性提供了一种低成本、易于制造的控制策略,从而实现了分层形态的有效剪裁。可以有效地设计实现高热稳定性、控制介观域的最佳处理方法。它独立于具有高性能的聚合物/富勒烯基太阳能电池的原始 BHJ 纳米结构设计。它推进了直接由纳米结构引起的热不稳定性的一般知识。