Suppr超能文献

临床叙述中跨机构用药描述模式分析

Analysis of cross-institutional medication description patterns in clinical narratives.

作者信息

Sohn Sunghwan, Clark Cheryl, Halgrim Scott R, Murphy Sean P, Jonnalagadda Siddhartha R, Wagholikar Kavishwar B, Wu Stephen T, Chute Christopher G, Liu Hongfang

机构信息

Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN.

出版信息

Biomed Inform Insights. 2013 Jun 24;6(Suppl 1):7-16. doi: 10.4137/BII.S11634. Print 2013.

Abstract

A large amount of medication information resides in the unstructured text found in electronic medical records, which requires advanced techniques to be properly mined. In clinical notes, medication information follows certain semantic patterns (eg, medication, dosage, frequency, and mode). Some medication descriptions contain additional word(s) between medication attributes. Therefore, it is essential to understand the semantic patterns as well as the patterns of the context interspersed among them (ie, context patterns) to effectively extract comprehensive medication information. In this paper we examined both semantic and context patterns, and compared those found in Mayo Clinic and i2b2 challenge data. We found that some variations exist between the institutions but the dominant patterns are common.

摘要

大量的药物信息存在于电子病历中的非结构化文本中,这需要先进的技术来进行恰当挖掘。在临床记录中,药物信息遵循特定的语义模式(例如,药物、剂量、频率和用药方式)。一些药物描述在药物属性之间包含额外的词汇。因此,了解语义模式以及穿插在其中的上下文模式(即语境模式)对于有效提取全面的药物信息至关重要。在本文中,我们研究了语义和语境模式,并比较了梅奥诊所和i2b2挑战赛数据中的模式。我们发现不同机构之间存在一些差异,但主要模式是相同的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a068/3702197/ec02ebc102f4/bii-suppl-1-2013-007f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验