Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, Boulevard des Aiguillettes, BP 70239, 54506 Vandoeuvre Les Nancy Cedex, France.
Phys Rev Lett. 2013 Jun 28;110(26):265506. doi: 10.1103/PhysRevLett.110.265506.
The frequency dependent phonon Boltzmann equation is transformed to an integral equation over the irreducible part of the Brillouin zone. Simultaneous diagonalization of the collision kernel of that equation and a symmetry crystal class operator allow us to obtain a spectral representation of the lattice thermal conductivity valid at finite frequency. Combining this approach with density functional calculations, an ab initio dynamical thermal conductivity is obtained for the first time. The static thermal conductivity is also obtained as a particular case. The method is applied to C, Si, and Mg2Si and excellent agreement is obtained with the available static thermal conductivity measurements.
频依赖声子玻尔兹曼方程被转化为布里渊区不可约部分上的积分方程。通过同时对角化该方程的碰撞核和一个对称晶体类运算符,我们可以得到在有限频率下晶格热导率的谱表示。将这种方法与密度泛函计算相结合,首次获得了声子动力学热导率的第一性原理结果。作为一个特例,也得到了静态热导率。该方法应用于 C、Si 和 Mg2Si,并与现有的静态热导率测量结果非常吻合。