Suppr超能文献

基于特征脑和机器学习,利用三维磁共振成像扫描检测与阿尔茨海默病相关的受试者和脑区。

Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning.

作者信息

Zhang Yudong, Dong Zhengchao, Phillips Preetha, Wang Shuihua, Ji Genlin, Yang Jiquan, Yuan Ti-Fei

机构信息

School of Computer Science and Technology, Nanjing Normal University Nanjing, China.

Division of Translational Imaging and MRI Unit, New York State Psychiatric Institute, Columbia University New York, NY, USA.

出版信息

Front Comput Neurosci. 2015 Jun 2;9:66. doi: 10.3389/fncom.2015.00066. eCollection 2015.

Abstract

PURPOSE

Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.

METHOD

First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC.

RESULTS

The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures.

CONCLUSION

The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.

摘要

目的

从正常老年对照(NC)中早期诊断或检测阿尔茨海默病(AD)非常重要。然而,计算机辅助诊断(CAD)尚未得到广泛应用,且分类性能未达到实际应用标准。我们提出了一种基于特征脑和机器学习的新型脑磁共振图像CAD系统,目标有两个:准确检测AD患者和与AD相关的脑区。

方法

首先,我们使用最大类间方差(ICV)从3D体积数据中选择关键切片。其次,我们为每个受试者生成一个特征脑集。第三,通过韦尔奇t检验(WTT)获得最重要的特征脑(MIE)。最后,使用经粒子群优化训练的具有不同核的核支持向量机对AD患者进行准确预测。突出显示MIE中值高于0.98分位数的系数,以获得区分AD和NC的判别区域。

结果

实验表明,所提出的方法在预测AD患者方面具有与现有方法相竞争的性能,特别是多项式核的准确率(92.36±0.94)优于线性核的91.47±1.02和径向基函数(RBF)核的86.71±1.93。所提出的基于特征脑的CAD系统检测到30个与AD相关的脑区(前扣带回、尾状核、小脑、扣带回、屏状核、额下回、顶下小叶、脑岛、侧脑室、豆状核、舌回、额内侧回、额中回、枕中回、颞中回、中央旁小叶、海马旁回、中央后回、后扣带回、中央前回、楔前叶、胼胝体下回、脑回下、额上回、顶上小叶、颞上回、缘上回、丘脑、颞横回和钩回)。结果与现有文献一致。

结论

特征脑方法在MRI扫描中对AD患者的预测和判别脑区检测方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af44/4451357/f9f56926ba03/fncom-09-00066-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验