IEEE Trans Biomed Circuits Syst. 2011 Apr;5(2):169-78. doi: 10.1109/TBCAS.2010.2076281.
Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.
用于监测或操纵大脑活动的植入式微系统通常需要使用超低功耗、小型化的电子设备在片上实时处理多通道神经数据。在本文中,我们提出了一种用于神经信号处理的集成电路/体系结构级硬件设计框架,该框架利用了信号处理算法的特性。首先,我们考虑了不同的功率降低技术,并比较了超低频率亚阈值和传统超阈值设计之间的能量效率。我们表明,通过充分利用广泛的功率门控,工作频率高得多的超阈值设计可以实现可比的能量消耗。它还在大工艺变化下提供了更高的操作鲁棒性和产量。接下来,我们提出了一种体系结构级的优先设计方法,通过隔离关键计算块(相对于输出信号的质量)并为它们分配比非关键计算块更高的延迟裕度,进一步降低能量。在参数变化下可能发生的延迟故障被限制在非关键组件中,允许在电压缩放下质量的逐渐降级。使用来自海蛞蝓(Aplysia californica)的预记录神经数据进行的仿真结果表明,与传统设计方法相比,应用所提出的设计方法可以在不影响输出信号质量的情况下,显著降低总能量,而不会影响输出信号质量。