Suppr超能文献

使用神经影像数据识别疾病相关的空间协方差模式。

Identification of disease-related spatial covariance patterns using neuroimaging data.

作者信息

Spetsieris Phoebe, Ma Yilong, Peng Shichun, Ko Ji Hyun, Dhawan Vijay, Tang Chris C, Eidelberg David

机构信息

Center for Neurosciences, The Feinstein Institute for Medical Research.

出版信息

J Vis Exp. 2013 Jun 26(76):50319. doi: 10.3791/50319.

Abstract

The scaled subprofile model (SSM)(1-4) is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data(2,5,6). Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors(7,8). Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects(5,6). Cross-validation within the derivation set can be performed using bootstrap resampling techniques(9). Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets(10). Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation(11). These standardized values can in turn be used to assist in differential diagnosis(12,13) and to assess disease progression and treatment effects at the network level(7,14-16). We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.

摘要

尺度子轮廓模型(SSM)(1 - 4)是一种基于多变量主成分分析的算法,它能够识别患者和对照组脑图像数据中的主要变异来源,同时排除次要成分(图1)。直接应用于稳态多模态图像的逐体素协方差数据时,整个组图像集可以简化为几个显著的线性独立协方差模式以及相应的个体得分。每个模式,称为组不变子轮廓(GIS),是一个正交主成分,代表功能上相互关联的脑区在空间上分布的网络。通过数据固有的对数转换和均值中心化,消除了可能掩盖较小网络特定贡献的大的全局平均标量效应(2,5,6)。个体以简单标量得分表示的可变程度来表达这些模式中的每一种,该标量得分可以与独立的临床或心理测量描述符相关(7,8)。通过对个体得分(即模式表达值)进行逻辑回归分析,可以导出线性系数,将多个主成分组合成单个与疾病相关的空间协方差模式,即具有更好区分患者与健康对照个体能力的复合网络(5,6)。可以使用自助重采样技术在推导集中进行交叉验证(9)。通过对前瞻性数据集中推导模式的直接得分评估,可以轻松确认向前验证(10)。一旦经过验证,与疾病相关的模式可用于根据固定的参考样本对个体患者进行评分,通常是在原始模式推导中(与疾病组一起)使用的健康个体集(11)。这些标准化值反过来可用于辅助鉴别诊断(12,13),并在网络水平评估疾病进展和治疗效果(7,14 - 16)。我们展示了使用我们的内部软件将这种方法应用于帕金森病患者和正常对照的FDG PET数据,以得出疾病的特征性协方差模式生物标志物的示例。

相似文献

引用本文的文献

本文引用的文献

5
Network correlates of disease severity in multiple system atrophy.多系统萎缩疾病严重程度的网络相关性。
Neurology. 2012 Apr 17;78(16):1237-44. doi: 10.1212/WNL.0b013e318250d7fd. Epub 2012 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验